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In the research of machine learning algorithms for classification tasks,
the comparison of the performances of algorithms is extremely impor-
tant, and a statistical test of significance for generalization error is often
used to perform it in the machine learning literature. In view of the
randomness of partitions in cross-validation, a new blocked 3×2 cross-
validation is proposed to estimate generalization error in this letter. We
then conduct an analysis of variance of the blocked 3×2 cross-validated
estimator. A relatively conservative variance estimator that considers the
correlation between any two two-fold cross-validations, and was previ-
ously neglected in 5×2 cross-validated t and F-tests is put forward. A
corresponding test using this variance estimator is presented to compare
the performances of algorithms. Simulated results show that the perfor-
mance of our test is comparable with that of 5×2 cross-validated tests but
with less computation complexity.

1 Introduction

In typical supervised classification learning, generalization error is a major
measure of the performance of learning algorithm. To compare the perfor-
mances of algorithms, we usually need to use statistical tests of significance
to determine which algorithm will be most preferable due to the existence of
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Figure 1: Variance estimator given by Dietterich (1998), shown by the dashed
curve, versus the real variance, shown by the solid curve.

random error. Currently generalization error is usually estimated through
various forms of cross-validation. For example, Nadeau and Bengio (2003)
estimated generalization error by repeated learning-testing, whereas Bengio
and Grandvalet (2004), Markatou, Tian, Biswas, and Hripcsak (2005), and
Grandvalet and Bengio (2006) used standard K-fold cross-validation. For
testing the significance of differences between two algorithms, Dietterich
(1998) proposed a new 5×2 cross-validated t-test and demonstrated that its
performance is better than ten-fold cross-validation by simulated experi-
ments. Alpaydin (1999) constructed a variant of 5×2 cross-validated t-test,
combined 5×2 cross-validated F-test, and showed that it has higher power
than the 5×2 cross-validated t-test. Similar to Alpaydin (1999), Yildiz (2013)
gave a combined 5×2 cross-validated t-test and exhibited that it has higher
power (lower type II error) and lower type I error compared to the 5×2
cross-validated t-test. The tests of significance for comparing the perfor-
mances of algorithms based on other performance measures such as AUC
(area under the receiver operating characteristic curve) and F value refer to
Chen, Gallas, and Yousef (2012) and Yang and Liu (1999).

In terms of the method given by Dietterich (1998), Alpaydin (1999) and
Yildiz (2013), we know that the 5×2 cross-validation is the average of ran-
dom samplings conducted five times. They used the average of five inde-
pendent sample variances as the estimation of variance in constructing test
statistics. However, an underestimation of real variance is illustrated by the
following example:

Example 1. Comparison of the real variance of p(1)

1 and the variance es-
timator given by Dietterich (1998) in the 5×2 cross-validated t-test (see
Figure 1).

We have Z = (X,Y) with P(Y = 1) = P(Y = 0) = 1
2 , X|Y = 0 ∼ N(0, I10),

and X|Y = 1 ∼ N(1, 2I10). Here, the learning algorithm is a classification
tree. The real variance of p(1)

1 from 5×2 cross-validation is estimated on
100,000 independent experiments.
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Figure 2: Curve of covariance versus number of overlapped samples.

Although random partitions for 5×2 cross-validation are independent,
training sets (test sets) from any two independent partitions contain com-
mon samples regardless of how the data are split. Thus, cross-validation
estimators for different data partitions are actually not independent. The
5×2 cross-validated F-test in Alpaydin (1999) evidently does not consider
the correlation among the five two-fold cross-validations: p( j)

i and p( j′ )
i′ ,

i �= i′, i, i′ = 1, . . . , 5, j, j′ = 1, 2. This observation can be problematic as-
suming that the numerator (

∑5
i=1

∑2
j=1(p( j)

i )2) of the test statistic follows
the σ 2χ2(10) distribution and the test statistic follows the F(10, 5) distribu-
tion. Despite the relatively large sample size, the proportion of covariance
component to the total variance remains significant. This observation is also
evident from the simulated experiment 2 and real example 1 in section 3.
However, results may lead to a liberal 5×2 cross-validated t- or F-test.

Furthermore, the dependence between any two two-fold cross-
validations is related to the number of overlapped samples between train-
ing sets. The impact of number of overlapped samples on covariance is also
demonstrated in this study.

Example 2. Consider five independent predictors, all standard normal.
The conditional probability function is

p(x) = exp(1 + ∑5
i=1 1.5xi)

1 + exp(1 + ∑5
i=1 1.5xi)

with a probability of Y = 1. We took the sample size to be 512. The learning
algorithm is a support vector machine (SVM).

Figure 2 shows that the initial decrease and subsequent increase in the
covariance of any two two-fold cross-validated estimators correspond to an
increase in the number of overlapped samples. The covariance reaches the
minimum when the number of overlapped samples is n

4 (n is the sample
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size). However, the 5×2 cross-validation in Dietterich (1998), Alpaydin
(1999), and Yildiz (2013) resulted from five random partitions, which fa-
cilitated a larger variance. In particular, Markatou et al. (2005) theoretically
proved that the number of overlapped samples from any two training sets
follows a hypergeometric distribution and that the mathematical expecta-
tion is n

4 (n is the sample size). Overlapped samples with a larger deviation
from n

4 can result in a large covariance, which is unavoidable for a random
5×2 cross-validation. The assumption that an identical covariance exists for
different groups of random 5×2 cross-validation is not reasonable despite
the fact that samples are independent and identically distributed when
theoretically analyzing the covariance between different groups. This ob-
servation also leads to difficulty in the theoretical analysis of a variance of
a random 5×2 cross-validated estimator.

Thus, for the data partitions of cross-validation, we should split the data
such that the ideal value ( n

4 ) can be achieved for each partition through
preliminary design; then the resulting training and test sets have a better
sample balance. By doing this, we aim to mitigate the effect of the number
of overlapped samples such that the covariance between different groups
becomes theoretically identical. Intuitively, the resulting cross-validation
estimator is supposed to have good properties such as smaller variance
(see the simulated experiments 1).

Alpaydin (2010) devoted a chapter of his book to the importance of
the design of machine learning experiments. In this study, we also regard
data partition as an experimental design—designing the data partitions
according to the purpose of the experiment. For example, the basic task of
machine learning experimental design is to find out how it can use fewer
data partitions and fewer experiments to achieve the goal of the experiment.

Based on the above analysis, when implementing cross-validation, the
data should first be split into four balanced blocks and then take two as a
training set and the other two as a test set to implement the two-fold cross-
validation. However, such combinations have three groups altogether, so
three replications of two-fold cross-validations are performed (instead of
performing a four-fold cross-validation). We call this blocked 3×2 cross-
validation. For blocked 3×2 cross-validation, any two data sets between
different groups (either the training or the test sets) obviously have the same
number of overlapped samples and better sample balance, thus resulting in
variance estimation that should have good properties (better variance es-
timation is the premise of a comparison of algorithm performances). Then
a relatively conservative variance estimator that considers the correlation
between any two two-fold cross-validations that was previously neglected
in 5×2 cross-validated t and F-tests is put forward. A corresponding test
using this variance estimator is presented to compare the algorithms’ per-
formances. Section 6 shows that the performance of our test is comparable
to that of 5×2 cross-validated tests. In theory, more replications can help
yield better variance estimation, but the experiments by design can achieve
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the goal in fewer replicated experiments and improve the efficiency of the
variance estimation (i.e., the same accuracy estimator can be obtained even
with fewer number of experiments).

Based on the same idea, Li, Wang, Wang, and Li (2010) applied this
method to the practical application of natural language processing (NLP).
The method of balancing data into four blocks essentially reflects the idea
of statistical experimental design, which requires that the collected data
should be designed beforehand. This partition method may be easier to
implement in NLP.

The remainder of this paper is organized as follows. Section 2 defines the
measures of performance for algorithms and their estimation using K-fold
cross-validation and blocked 3×2 cross-validation. A theoretical analysis
of the variance of blocked 3×2 cross-validated estimator for generalization
error is given in section 3. The developed variance estimators are pre-
sented in section 4, and section 5 describes the corresponding test statistics.
Section 6 discusses the simulated experiments that show how the proposed
statistic behaves compared with statistics that are already in use. Section 7
concludes the letter.

2 Blocked 3×2 Cross-Validation Estimator of Generalization Error

2.1 Definition of Generalization Error. Formally, we assume that a data
set D = {z1, z2, . . . , zn}, zi ∈ Z is independently sampled from an unknown
distribution P, where zi = (xi, yi), xi is an input vector and yi is an output
variable. If f = A(D) denotes the prediction function returned by algorithm
A on the data set D, and L( f (x), y) = I[ f (x) �= y]({0, 1}-loss) represents a
measure of discrepancy between the prediction and the observation, then
the generalization error of classification learning algorithm is defined by

μ(n) = EPE(n) = E[L(A(D), z)], (2.1)

where the expectation is taken with respect to D and z, z sampled from
P is independent of D. The expectation of equation 2.1 means that we are
interested in the general performance of a classification algorithm, not the
performance of a specific data set.

2.2 K-Fold Cross-Validation Estimator. K-fold cross-validation is prob-
ably the simplest and most widely used method for estimating generaliza-
tion error in limited sample cases. It uses all available examples as training
and test examples and mimics K training and test sets by using some of the
data to fit the model and some to test it. Afterward, the generalization error
is estimated by combining the K results.
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Table 1: The Blocked 3×2 Cross-Validation.

Group Training Set Test Set μ̂
(i)
k

1 D(1)

1 = (P1, P2) T (1)

1 = (P3, P4) μ̂
(1)

1

1 D(1)

2 = (P3, P4) T (1)

2 = (P1, P2) μ̂
(1)

2

2 D(2)

1 = (P1, P3) T (2)

1 = (P2, P4) μ̂
(2)

1

2 D(2)

2 = (P2, P4) T (2)

2 = (P1, P3) μ̂
(2)

2

3 D(3)

1 = (P1, P4) T (3)

1 = (P2, P3) μ̂
(3)

1

3 D(3)

2 = (P2, P3) T (3)

2 = (P1, P4) μ̂
(3)

2

First, the data set D is split into K disjoint and equal-sized blocks, denoted
as Tk, k = 1, 2, . . . , K. Let Dk be the training set obtained by removing the
elements in Tk from D. Then the cross-validation estimator is

μ̂K = 1
K

K∑
k=1

μ̂k, (2.2)

where μ̂k = 1
m

∑
zi∈Tk

L(A(Dk), zi) and m ≈ n/K. When we want to compare

the performances of algorithms A1 and A2, μ̂k = 1
m

∑
zi∈Tk

(L(A1(Dk), zi) −
L(A2(Dk), zi)).

Note that the μ̂K estimates EPE(n − m), not EPE(n). It estimates EPE( n
2 )

in the case of two-fold cross-validation.

2.3 Blocked 3×2 Cross-Validation Estimator. The blocked 3×2 cross-
validation first proposed by Li et al. (2010) in the practical application of
natural language processing is a method used for corpus partitioning. They
proposed that data set D should first be split into four balanced blocks and
then take either the two as the training set and the other two as a test set to
implement the two-fold cross-validation. However, such combinations have
three groups altogether, so three replications of two-fold cross-validations
are performed.

In practice, data set D is split into four disjoint and equal-sized blocks,
denoted as Pj, j = 1, 2, 3, 4, respectively. The combination of any two Pjs
results in three groups and six different combinations (see Table 1). Here,
D(i)

k , i = 1, 2, 3, k = 1, 2 denotes the training set, and T (i)
k , i = 1, 2, 3, k = 1, 2

denotes the test set. They serve as a training or testing set with each other;
thus, D(i)

1 = T (i)
2 , D(i)

2 = T (i)
1 , i = 1, 2, 3. The blocked 3×2 cross-validation is

defined as the average of errors in all three groups:

μ̂3×2 = 1
3

3∑
i=1

μ̂(i) = 1
3

3∑
i=1

1
2

2∑
k=1

μ̂
(i)
k , (2.3)
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Figure 3: Box plots for simulated experiment 1, where B 3×2 cv (3×2 cv) refers
to blocked 3×2 cross validation (random 3×2 cross validation)

where μ̂
(i)
k = 2

n

∑
z j∈T (i)

k
L(A(D(i)

k ), z j). Similar to the K-fold cross-validation,

when comparing the performances of algorithms A1 and A2, μ̂
(i)
k =

2
n

∑
z j∈T (i)

k
(L(A1(D

(i)
k ), z j) − L(A2(D

(i)
k ), z j)) .

The structure of blocked 3×2 cross-validation based on four-block data
partition is very special; that is, there is one, and only one, overlapped
block in any two combinations between different groups: #{D(i)

k

⋂
D(i′ )

k′ } =
n/4, #{T (i)

k

⋂
T (i′ )

k′ } = n/4, #{D(i)
k

⋂
T (i′ )

k′ } = n/4 for i �= i′, k and k′ randomly
drawn, i, i′ = 1, 2, 3, k, k′ = 1, 2. This balance reduces errors resulting from
different numbers of overlapped samples between different groups in ran-
dom 3×2 cross-validation obtained from three random partitions (see Fig-
ure 3). Refer to simulated experiment 1:

Simulated experiment 1: At the sample size n = 40, for 20 observations
with Y = 1, we generate three independent random variables X1, X2, X3, all
standard normal. For the remaining 20 observations with Y = 0, we generate
the three predictors that are also independent, but with N(0.4, 1), N(0.3, 1),
and N(0, 1) distributions, respectively. Then X3 is not useful for classifying
Y. The learning algorithm is a classification tree. We then compare variances
of the blocked 3×2 cross-validation and random 3×2 cross-validation. In
addition to this setup, we also consider another one with relatively large
sample sizes. At sample size n = 1024, for 512 observations with Y = 1,
we generate 300 independent random variables, all standard normal. For
the remaining 512 observations with Y = 0, we generate 300 predictors
that are also independent, but with N(0.4, I100), N(0.3, I100), and N(0, I100)

distributions, respectively.
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3 Theoretical Analysis of the Variance of μ̂3×2

For the convenience of the readers, a lemma in Nadeau and Bengio (2003)
is listed first.

Lemma 1. Let U1, U2, . . . , UK be random variables with common mean β and
the following covariance structure:

Var(Uk) = δ,∀ k, Cov(Uk, Uk ′ ) = γ,∀ k �= k ′.

Let π = γ

δ
be the correlation between Uk and Uk ′ . Let Ū = 1

K

∑K
k=1 Uk and S2

U =
1

K−1

∑K
k=1(Uk − Ū)2 be the sample mean and sample variance, respectively. Then:

1. Var(Ū) = γ + δ−γ

K .
2. If the stated covariance structure holds for all K (with γ and δ not depending

on K), then γ ≥ 0.
3. E(S2

U) = δ − γ .

To study Var(μ̂3×2), we need to define the following covariances.

Definition 1.

� Let σ 2
1 = Var (μ̂(i)

k ) for i = 1, 2, 3, k = 1, 2.
� Let σ 2

2 = Cov(μ̂(i)
k , μ̂

(i)
k ′ ) for k �= k ′, that is, the covariance within group.

� Let σ 2
3 = Cov(μ̂(i)

k , μ̂
(i ′)
k ′ ), with i �= i ′, k and k ′ randomly drawn, that is, the

covariance between different groups. The implicit assumption is made that
the covariances of any two blocks in different groups are all the same. This
is reasonable for the blocked 3×2 cross-validation. However, it may not be
reasonable for the (random) 3×2 or 5×2, because the covariance of any two
two-fold cross-validated estimators decreases (or increases) with an increase
in the number of overlapped samples.

Proposition 1. The mean and variance of μ̂3×2 have the following forms:

E(μ̂3×2) = μ(n/2), (3.1)

Var (μ̂3×2) =
1
6
σ 2

1 +
1
6
σ 2

2 +
2
3
σ 2

3 =
1
6
σ 2

1 (1 + ρ1 + 4ρ2), (3.2)

where ρ1 = σ 2
2 /σ 2

1 = Corr (μ̂(i)
k , μ̂

(i)
k ′ ) for k �= k ′, ρ2 = σ 2

3 /σ 2
1 = Corr (μ̂(i)

k , μ̂
(i ′)
k ′ ) for

i �= i ′, k = k ′ or k �= k ′.

Proof. Concerning expectations, we obviously have E(μ̂
(i)
k ) = μ(n/2), and

thus E(μ̂3×2) = μ(n/2).
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From lemma 1, we have

σ ′
1 ≡ Var(μ̂(i)) = 1

2
(σ 2

1 + σ 2
2 ).

For i �= i′, we have

σ ′
2 ≡ Cov(μ̂(i), μ̂(i′ )) = 1

4

2∑
k=1

2∑
k′=1

Cov(μ̂
(i)
k , μ̂

(i′ )
k′ ) = σ 2

3 ,

and therefore (using lemma 1 again)

Var(μ̂3×2) = σ ′
2 + σ ′

1 − σ ′
2

3
= 1

6
σ 2

1 + 1
6
σ 2

2 + 2
3
σ 2

3 = 1
6
σ 2

1 (1 + ρ1 + 4ρ2).

From equation 3.2, we know that the variance of blocked 3×2 cross-
validation can decompose in three components. In detail, it is a linear
combination of three moments: σ 2

1 , σ 2
2 , σ 2

3 . In truth, σ 2
2 and σ 2

3 cannot be
negligible. Next, we illustrate this using the simulated and real data.

Simulated experiment 2: Classification problem with two classes on simulated
data.

We have Z = (X,Y) with P(Y = 1) = P(Y = 0) = 1
2 , X|Y = 0 ∼ N(0, I5),

and X|Y = 1 ∼ N(1, 2I5). Here, the learning algorithm is a logistic regres-
sion. We now look at the variance of 3 × 2 cross-validation and decompose
in the three components for n = 150, 300, 400, 500, 1000.

From Figure 4, we know that σ 2
2 has little effect, but the contribution of

σ 2
3 to Var(μ̂3×2) is of the same order as the one of σ 2

1 , and even greater. Thus,
neglecting the effect of σ 2

2 and σ 2
3 will introduce a large bias.

Real example 1: Classification problem on the letter data of UCI database.
A data set for identifying the letters of the roman alphabet comprises

20,000 examples described by 16 features. The 26 letters represent 26 cate-
gories, similar to Nadeau and Bengio (2003), who turned it into a two-class
(A–M versus N–Z) classification problem. The learning algorithm is classi-
fication tree. Then look at the variance of the blocked 3×2 cross-validation
estimator of generalization error and decompose in the three components
for n = 20, 40, 80, 160, 400, 800, 2000. Results are shown in Figure 5.

Note that accurate estimations of Var(μ̂3×2) and the decomposition of
its three components require many independent replicated experiments.
This was achieved by independent sampling from 20,000 examples with
replacement.

With the changes in the capacity of sample set, σ 2
1 is responsible for

only 30% to 60% of the total variance. Findings further prove that the
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Figure 4: Bar plots of the contributions to Var(μ̂3×2) due to σ 2
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3 versus the

number of examples n for simulated experiment 2.
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Figure 5: Bar plots of the contributions to Var(μ̂3×2) due to σ 2
1 , σ 2

2 , σ 2
3 versus the

number of examples n for real example 1.

correlations between blocks should not be negligible when considering
Var(μ̂3×2). Similar to what Bengio and Grandvalet (2004) pointed out, the
estimation of variance of K-fold cross-validation should indeed take into
account the correlations of errors.

Our findings also demonstrate that it is not appropriate to simply use
the sample variance to estimate true variance because it seriously underes-
timates the true variance.
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4 Estimation of Var(μ̂3×2)

4.1 Estimator Proposed by Li (2010) (the L Estimator). If the three
groups in the blocked 3×2 cross-validation are independent of each other,
Var(μ̂3×2) should be expressed as

1
6
σ 2

1 (1 + ρ1),

where ρ1 = Corr(μ̂(i)
k , μ̂

(i)
k′ ), k �= k′, i = 1, 2, 3.

Then from lemma 1, we know that

1
9

3∑
i=1

(
1
2

+ ρ1

1 − ρ1

) 2∑
k=1

(μ̂
(i)
k − μ̂(i))2

is an unbiased estimator of Var(μ̂3×2). However, the problem is that ρ1 is
unknown and difficult to estimate. Li (2010) recommends the use of ρ̂1 = 0.5
as a estimator of ρ1, such that the estimator of Var(μ̂3×2) can be written as

V̂ar1(μ̂3×2) = 1
9

3∑
i=1

(
1
2

+
1
2

1 − 1
2

)
2∑

k=1

(μ̂
(i)
k − μ̂(i))2

= 1
6

3∑
i=1

2∑
k=1

(
μ̂

(i)
k − μ̂(i)

)2
. (4.1)

We call this estimator the L estimator in this paper. Since there are three
restrictions in equation 4.1, the degrees of freedom of L estimator are 3.

Note that

E(V̂ar1(μ̂3×2)) = 1
9

3∑
i=1

(
1
2

+ ρ1

1 − ρ1
+ 1 − ρ1

1 − ρ1

) 2∑
k=1

(μ̂
(i)
k − μ̂(i))2

= 1
6
σ 2

1 (1 + ρ1) +
(

1 − ρ1

1 − ρ1

) 1
6σ 2

1 (1 + ρ1)

1
2 + ρ1

1−ρ1

= 1
6
σ 2

1 (1 + ρ1) + 2
6
σ 2

1 (1 − 2ρ1),

Var(μ̂3×2) = 1
6
σ 2

1 + 1
6
σ 2

2 + 2
3
σ 2

3 = 1
6
σ 2

1 (1 + ρ1) + 2
6
σ 2

1 (2ρ2).
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Thus, to determine if the L estimator underestimates or overestimates
Var(μ̂3×2), we only need to compare the 1 − 2ρ1 and 2ρ2. If 1 − 2ρ1 < 2ρ2,
the estimator V̂ar1(μ̂3×2) is said to be liberal; otherwise, it is conservative.

Similar to Nadeau and Bengio (2003), we present the following proposi-
tion:

Proposition 2. Assume that L(A(D(i)
k ), z j ) depends on only test samples zj and

sample size (i.e., the loss function does not depend on the actual examples D(i)
k and

the underlying algorithm), ρ2 = 0.5.

Proof. Under the assumption of proposition 2, the loss function can be
simply written as the function of test samples. Indeed, when L(A(Dk), z j) =
f (z j), we have

μ̂
(1)

k = 2
n

∑
z j∈Tk

L(A(Dk), z j) = 2
n

∑
z j∈Tk

f (z j),

and

μ̂
(2)

k′ = 2
n

∑
z′

j∈Tk′

L(A(Dk′ ), z j′ ) = 2
n

∑
z j′ ∈Tk′

f (z j′ ).

From the independence of zj, we obviously have

Var(μ̂(1)

k ) = 4
n2

∑
z j∈Tk

Var( f (z j)) = 2
n

Var( f (z j)) = Var(μ̂(2)

k′ ),

Cov(μ̂
(1)

k , μ̂
(2)

k′ ) = 4
n2

∑
z j∈Tk

∑
z j′ ∈Tk′

Cov( f (z j), f (z j′ )).

Then, from the definition of Tk, we know that half of the observations are
the same between any two blocks of different groups. Thus, without loss of
generality, let Tk = (P1, P2), Tk′ = (P1, P3). We then have

Cov(μ̂
(1)

k , μ̂
(2)

k′ ) = 4
n2

∑
z j∈P1

Cov( f (z j), f (z j)) = 4
n2

n
4

Var( f (z j))

= 1
n

Var( f (z j)).
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Thus, the correlation between μ̂
(1)

k and μ̂
(2)

k′ is

ρ2 = Cov(μ̂
(1)

k , μ̂
(2)

k′ )

Var(μ̂(1)

k )
= 1

2
.

From Table 4 we know that L(A(D(i)
k ), z j) depends on the actual examples

D(i)
k and the underlying algorithm A, so ρ2 < 0.5. Moreover, the simulated

results in Tables 2 and 3 indicate that the L estimator underestimates the
true variance.

4.2 A New Estimator (the AL Estimator). The L estimator is obtained
by neglecting the correlation among different groups; however, we know
that ρ2 cannot actually be neglected by proposition 2 and the following
simulated experiments. Based on this, we present a new estimation method
by adapting the L estimator denoted as

V̂ar2(μ̂3×2) = V̂ar1(μ̂3×2) + λS2
μ̂(i) (4.2)

where S2
μ̂(i) = 1

2

∑3
i=1(μ̂

(i) − μ̂3×2)
2 denotes the sample variance of μ̂(i),

μ̂3×2 = 1
3

∑3
i=1 μ̂(i) and λ is the turning parameter. We refer to this method

as the AL estimator (Adaptive L estimator). In particular, when λ = 0, equa-
tion 4.2 is the L estimator. When λ = 2

3 , the following simple form for the
AL estimator is obtained:

V̂ar2(μ̂3×2) = 1
6

3∑
i=1

2∑
k=1

(μ̂
(i)
k − μ̂(i))2 + 2

3
· 1

2

3∑
i=1

(μ̂(i) − μ̂3×2)
2

= 1
6

3∑
i=1

2∑
k=1

(μ̂
(i)
k − μ̂(i))2 + 1

6

3∑
i=1

2∑
k=1

(μ̂(i) − μ̂3×2)
2

= 1
6

3∑
i=1

2∑
k=1

(μ̂
(i)
k − μ̂3×2)

2. (4.3)

This is based on 1
6

∑3
i=1

∑2
k=1(μ̂

(i) − μ̂3×2)(μ̂
(i)
k − μ̂(i)) = 1

6

∑3
i=1(μ̂

(i) −
μ̂3×2)

∑2
k=1(μ̂

(i)
k − μ̂(i)) = 0.

Obviously, there is only one restriction in equation 4.3, which means
that the degrees of freedom of AL estimator are 5. Next, we consider the
relationship between E(V̂ar2(μ̂3×2)) and Var(μ̂3×2).
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Table 2: The True Values of 1 − 2ρ1, 2ρ2, 2 − ρ1 − 2ρ2, and 3 − 4ρ2 for Simulated
Experiment 2.

n =
150 300 400 500 1000

1 − 2ρ1 0.752 0.790 0.834 0.872 0.900
2ρ2 0.832 0.858 0.870 0.888 0.908
2 − ρ1 − 2ρ2 1.044 1.037 1.047 1.048 1.042
3 − 4ρ2 1.336 1.284 1.260 1.224 1.184

Table 3: The True Values of 1 − 2ρ1, 2ρ2, 2 − ρ1 − 2ρ2, and 3 − 4ρ2 for Real
Example 1.

n =
20 40 80 160 400 800 2000

1 − 2ρ1 0.414 0.448 0.604 0.676 0.810 0.880 0.946
2ρ2 0.562 0.522 0.390 0.378 0.330 0.310 0.288
2 − ρ1 − 2ρ2 1.145 1.202 1.412 1.460 1.575 1.630 1.685
3 − 4ρ2 1.876 1.956 2.220 2.244 2.340 2.380 2.424

From lemma 1, we have

E(S2
μ̂(i) ) = σ ′

1 − σ ′
2 = σ ′

1(1 − ρ) = 1 − ρ

ρ + 1−ρ

3

σ ′
1

(
ρ + 1 − ρ

3

)

= σ ′
1(ρ + 1−ρ

3 )

1
3 + ρ

1−ρ

= Var(μ̂3×2)

1
3 + ρ

1−ρ

,

where ρ = σ ′
2

σ ′
1

= 2σ 2
3

σ 2
1 +σ 2

2
= 2ρ2

1+ρ1
is the correlation of μ̂(i). Then

E(V̂ar2(μ̂3×2)) = E(V̂ar1(μ̂3×2)) + λE(S2
μ̂(i) )

= 1
6
σ 2

1 (1 + ρ1) + 2
6
σ 2

1 (1 − 2ρ1) + λ
Var(μ̂3×2)

1
3 + ρ

1−ρ

= 1
6
σ 2

1 (1 + ρ1) + 1
6
σ 2

1 (2 + 3λ + (3λ − 4)ρ1 − 6λρ2).

When λ = 2
3 , we only need to compare 2 − ρ1 − 2ρ2 and 2ρ2. The true

values of 2 − ρ1 − 2ρ2 and 2ρ2 in simulated experiment 2 and real example
1 are obtained by conducting 100,000 independent experiments (see Tables 2
and 3, respectively). Results suggest that the AL estimator is conservative
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Table 4: The True Values of ρ1 and ρ2 for Simulated Experiment 3.

n =
Classifier 40 80 160 200 400 800 1200 1600 2000

NN ρ1 0.328 0.288 0.248 0.237 0.199 0.158 0.135 0.120 0.103
ρ2 0.332 0.310 0.283 0.276 0.254 0.251 0.261 0.271 0.276

NB ρ1 0.305 0.203 0.113 0.092 0.050 0.029 0.013 0.013 0.009
ρ2 0.334 0.371 0.400 0.408 0.434 0.453 0.457 0.465 0.468

CR ρ1 0.233 0.153 0.121 0.113 0.099 0.112 0.108 0.107 0.092
ρ2 0.267 0.198 0.205 0.206 0.218 0.245 0.251 0.250 0.242

SVM ρ1 0.433 0.366 0.298 0.284 0.233 0.182 0.154 0.138 0.127
ρ2 0.425 0.435 0.436 0.441 0.445 0.449 0.450 0.453 0.454

and becomes more conservative when λ > 2
3 . For example, when λ = 4

3 ,
E(V̂ar2(μ̂3×2)) = 1

6σ 2
1 (1 + ρ1) + 2

6σ 2
1 (3 − 4ρ2); thus, we have 3 − 4ρ2 > 2ρ2

if ρ2 < 0.5, which is conservative. Throughout this letter, the AL estimator
refers to the variance estimation when λ = 2

3 .

Simulated experiment 3. Following the setup of simulated experiment 2,
we study the changes of ρ1 and ρ2 with the increase in the number of
samples for multiple classifiers, such as neural networks (NN), naive Bayes
(NB), classification trees (CR), and support vector machine (SVM). Table 4
shows that ρ1 is almost less than ρ2 in addition to the case that the sample
size is 40 and the classifier is SVM, ρ1 = 0.433 > ρ2 = 0.425, and ρ1 and ρ2
are all greater than 0 in each sample size (0 < ρ1 < ρ2). As the sample size
increases, the difference between ρ1 and ρ2 becomes more obvious. This is
because ρ1 gradually decreases, while ρ2 tends toward stability with the
increase of n.

5 Five Tests for Comparing Classification Learning Algorithms

In this section, we present five techniques for performing statistical tests
for generalization errors. The first four are methods already discussed in
the literature, and the fifth is our proposed method. The test of hypothesis
(excluding 5×2 cv F-test) has the following general form:

Null hypothesis: H0 : μ(n/2) = μ0 to Alternative hypothesis: H1 : μ(n/2)

�= μ0.
If

∣∣∣∣ μ̂ − μ0√
σ̂ 2

∣∣∣∣ > c, (5.1)
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reject H0; otherwise, do not reject it. Note that in equation 5.1, μ̂ is an
estimator of μ(n/2), σ̂ 2 is a variance estimator of μ̂, and c is a percentile
from Student’s t distribution. We choose a significance level of α = 0.05 in
this letter. The only difference between the four techniques is in the choice
of μ̂, σ̂ 2, and c.

It should be noted that for a given sample size n, those five methods
aim at inference for μ(n/2), not μ(n). Before we present these test statistics,
we first introduce two concepts: a liberal test and a conservative test. A
test is liberal if it rejects the null hypothesis with a probability greater than
the significance level α whenever the null hypothesis is actually true; if
the probability is smaller than the significance level α, the test is said to
be conservative. To determine whether a test is liberal or conservative, the
political ratio is a useful statistic. We call Var(μ̂)

E(σ̂ 2 )
the political ratio because

it indicates that the test should be liberal when it is greater than 1 and
conservative when it is less than 1. Here, we perform the analysis based on
this statistic. Generally, the conservative test is preferable to the liberal test
in practical applications.

We now introduce the statistics to be considered in this letter.

5.1 K-Fold cv Paired t-Test. Recall that μ̂K = 1
K

∑K
k=1 μ̂k. The K-fold

cross-validated paired t-test considers μ̂ = μ̂K to estimate μ(n/K) and σ̂ 2 =
S2

μ̂k
K , where S2

μ̂k
is the sample variance of μ̂k. In this letter, we aim at inference

for μ(n/2). For this reason, we take K = 2. If we assume that μ̂k were drawn
independently from a normal distribution, then the cross-validated paired
t-test can be written as

tCV = μ̂2 − μ0√
S2

μ̂k
/2

∼ t1.

According to Bengio and Grandvalet (2004), the political ratio is ex-
pressed as

Var(μ̂)

E(σ̂ 2)
= σ 2

1 + σ 2
2

σ 2
1 − σ 2

2

.

Obviously the test is liberal if σ 2
2 > 0. The simulated results also show that

the σ 2
2 s are all greater than 0, which is in accordance with the conclusion of

Grandvalet and Bengio (2006). Thus, the results based on the cross-validated
t-test may be overconfident and lead to wrong conclusions. However, this
is one of the most commonly used methods in the literature.

5.2 5×2 cv Paired t-Test. Dietterich (1998) pointed out that the variance
of K-fold cv t-test can be underestimated due to the overlapping of training
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sets. Thus, they proposed a 5×2 cross-validated paired t-test based on five
replications of two-fold cross-validation. In each replication, the data are
randomly partitioned into two equal-sized sets T (i)

1 and T (i)
2 , i = 1, . . . , 5.

Each learning algorithm is trained on each set and tested on the other one.
This produces cross-validated estimators μ̂

(i)
1 and μ̂

(i)
2 , i = 1, . . . , 5. (Here,

we use the same mark with the blocked 3×2 cross-validation.) Let S2
i =

(μ̂
(i)
1 − μ̂(i))2 + (μ̂

(i)
2 − μ̂(i)) be the sample variance computed from the ith

replication. He then used μ̂ = μ̂
(1)

1 , σ̂ 2 =
∑5

i=1 S2
i

5 ; under the assumption of
normality, the resulting statistic is

t5×2CV = μ̂
(1)

1 − μ0√∑5
i=1 S2

i /5
∼ t5.

Note that the political ratio is given by

Var(μ̂(1)

1 )

E(σ̂ 2)
= σ 2

1

σ 2
1 − σ 2

2

.

In this work, the effect of the number of overlapped samples between cross-
validations on Var(μ̂) and E(σ̂ 2) is not considered.

The above leads to liberal inference when σ 2
2 > 0. Indeed, we know that

σ 2
2 is greater than 0 from the simulation of the previous section, so we think

the 5×2 cv t-test is liberal. However, Dietterich (1998) showed that this test
has an acceptable type I error and is more powerful than the K-fold cv t-test.

5.3 Corrected K-Fold cv Paired t-Test. Bengio and Grandvalet (2004)
showed that the correlation of test blocks cannot be ignored in comput-
ing the variance of K-fold cross-validation; otherwise, the variance will
be grossly underestimated. Based on this, Grandvalet and Bengio (2006)
obtained a corrected K-fold cross-validated paired t-test by correcting the

variance of K-fold cross-validation. If μ̂ = μ̂K, σ̂ 2 =
S2

μ̂k
K(1−ρ0 )

, the Bengio and
Grandvalet (2004) test can be expressed as

tCCV = μ̂K=2 − μ0√
S2

μ̂k
/(2(1 − ρ0))

∼ t1

where ρ0 = Cov(μ̂1,μ̂2 )

Var(μ̂K=2 )
is called the correlation of blocks. According to the

definition of correlated coefficient of blocks, however, it should be ρ1.
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Therefore, we modify this test using the relationship between ρ0 and ρ1,
and the modified test takes the form

tCCV = μ̂K=2 − μ0√
S2

μ̂k

/( 1−ρ1
1+ρ1

) ∼ t1,

where ρ1 is also an unknown parameter, for which Grandvalet and Bengio
(2006) suggested using ρ̂1 = 1/2 as a surrogate. Based on our simulated
analysis, the correlated coefficient of blocks for two-fold cross-validation
should be relatively small. Thus, the selection of ρ̂1 = 1/2 will most likely
result in a conservative test.

The political ratio is

Var(μ̂)

E(σ̂ 2)
=

1+ρ1
1−ρ1

1+1/2
1−1/2

.

Having mentioned earlier that conservative inference is preferable to liberal
inference, we therefore expect that ρ1 < 1/2. This is confirmed in the exper-
iment of Grandvalet and Bengio (2006), although there is no theoretical
proof for this.

5.4 5×2 cv Paired F-Test. Alpaydin (1999) pointed out that the numer-
ator of 5×2 cv t-test statistic μ̂

(1)

1 is arbitrary; actually, there are 10 different
values that can be placed in the numerator μ̂

( j)
i , i = 1, . . . , 5, j = 1, 2, lead-

ing to 10 possible statistics:

t( j)
i = μ̂

( j)
i − μ0√

1
5

∑5
i=1 S2

i

.

Alpaydin then proposed a variant of the 5×2 cv t-test that combines multiple
statistics to get a more robust test.

If μ̂
( j)
i /σ ∼ N(0, 1), then (μ̂

( j)
i )2/σ 2 ∼ χ2

1 and
∑5

i=1
∑2

j=1(μ̂
( j)
i )2/σ 2 is

chi-square with 10 degrees of freedom. Therefore, we have

F5×2CV =
1
10

∑5
i=1

∑2
j=1(μ̂

( j)
i − μ0)

2

1
5

∑5
i=1 S2

i

∼ F10,5.

5.5 Blocked 3×2 cv t-Test. The analysis presented in section 4.1 indi-
cates that V̂ar1(μ̂3×2) cannot guarantee that it is always greater than or equal
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Table 5: Summary Description of the Test Methods.

Name μ̂ σ̂ 2 c Var(μ̂)

E(σ̂ 2 )

K-fold cv t-test μ̂K=2 S2
μ̂k

/(2) t1,1−α/2
1+ρ1
1−ρ1

5×2 cv t-test μ̂
(1)

1
∑5

i=1 S2
i /5 t5,1−α/2

1
1−ρ1

Corrected K-fold cv t-test μ̂K=2 S2
μ̂k

/(1/3) t1,1−α/2

1+ρ1
1−ρ1
1+1/2
1−1/2

Blocked 3×2 cv t-test(λ = 2
3 ) μ̂3×2 V̂ar2(μ̂3×2) t5,1−α/2

1+ρ1+4ρ2
5−ρ1−4ρ2

Blocked 3×2 cv t-test(λ = 4
3 )

1+ρ1+4ρ2
7+ρ1−8ρ2

Note: tq,p refer to the quantile p of the tq distribution.

to Var(μ̂3×2) , that is, the L estimator may overestimate or underestimate
the true variance. For this reason, we propose a new conservative variance
estimation by appending a corrected term based on the sample variance of
μ̂(i) to the L estimator. This leads to

tB3×2CV = μ̂3×2 − μ0√
V̂ar2(μ̂3×2)

∼ t5.

We summarize the tests in Table 5.

6 Simulated Experiment Study

In this section, we perform a simulation study to investigate the probability
of type I error and the power of the five statistics considered in the previous
section. For a given problem, we generate 1000 independent data sets to
fully take into account the effect of the randomness of the training set as
well as test examples.

6.1 Classification of Two Gaussian Populations. Considering the prob-
lem of estimating the generalization error in a classification problem
with two classes, we thus have Z = (X,Y), with Prob(Y = 1) = Prob(Y =
0) = 1

2 , X|Y = 0 ∼ N(μ0, �0), X|Y = 1 ∼ N(μ1, �1). The classification algo-
rithms are:

� Regression tree. We train a least square regression tree, and the de-
cision function is FA(ZS)(X) = I[NZS

(X) > 0.5], where NZS
(X) is the

leaf value corresponding to X of the tree obtained when training on
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ZS. Thus, LA( j, i) = I[FA(ZSj
)(Xi) �= Yi] is equal to 1 whenever this

algorithm misclassifies example i; otherwise, it is 0.
� Ordinary least squares linear regression. We perform the regression of

Y against X, and the decision function is FB(ZS)(X) = I[β̂T
ZS

X > 0.5],

where β̂ZS
is the ordinary least squares regression coefficient esti-

mates. Thus, LB( j, i) = I[FB(ZSj
)(Xi) �= Yi] is equal to 1 whenever this

algorithm misclassifies example i; otherwise, it is 0.

6.2 Classification of Letters. We consider the problem of estimating
generalization errors in the letter recognition classification problem. The
classification algorithms are:

� Classification tree. We train a classification tree, and the decision func-
tion is FA(ZS)(X). Here, the classification loss function LA( j, i) =
I[FA(ZSj

)(Xi) �= Yi] is equal to 1 whenever this algorithm misclassifies

example i; otherwise, it is 0.
� First nearest neighbor. We apply the first nearest neighbor rule with

a distorted distance metric to perform classification. Specifically, the
distance between two vectors of inputs is

d(X (1), X (2)) =
3∑

k=1

ω2−k
∑
i∈Ck

(X (1) − X (2))2,

where C1 = {1, 3, 9, 16},C2 = {2, 4, 6, 7, 8, 10, 12, 14, 15},C3 = {5, 11,

13} denote the sets of components that are weighted by ω, 1, ω−1,
respectively.

6.3 Type I Error Results. First, from the conclusion of Nadeau and
Bengio (2003), we know that the two classification learning algorithms have
no statistical significant differences with the setups of Tables 6 and 7, which
cannot reject the null hypothesis. Tables 6 and 7 show the results of the
type I error rates. The K-fold cv t-test and the corrected K-fold cv t-test
exhibit somewhat elevated probabilities of type I error. One example is the
situation represented by simulation 1 of Table 6. In this case, the probabilities
of type I error of tCV and tCCV are 0.08 and 0.07. However, the 5×2 cv t-test,
the 5×2 cv F-test, and blocked 3×2 cv t-test have acceptable type I errors.
For example, in Table 7, the probability of a type I error of the 5×2 cv t-test
is 0.05, the 5×2 cv F-test is 0.04, and the blocked 3×2 cv t-test is 0.02.

6.4 Power Measure of Tests. A type I error is not the only important
consideration in choosing a statistical test. When the probability of type I
error is comparative, the test is always measured by the power function.

Figures 6, 7, 8, 9, 10, and 11 plot the power curves for the five statistical
tests. These curves show that the blocked 3×2 cv t-test is the most powerful,
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Table 6: Probability of Type I Error for Each Statistical Test in the Classification
of Two Gaussian Populations.

Simulation 1 Simulation 2

n 200 2000
μ0 (0,0) (0,0)
μ1 (1,1) (1,1)
�0 I2 I2
�1

1
6 I2 0.173 I2

Probability of type I error
tCV 0.08 0.07
tCCV 0.07 0.05
t5×2CV 0.05 0.04
F5×2CV 0.04 0.05
tB3×2CV 0.05 0.05

Table 7: Probability of Type I Error for Each Statistical Test in the Classification
of Letters.

n 300
ω 25
Probability of type I error

tCV 0.08
tCCV 0.06
t5×2CV 0.05
F5×2CV 0.04
tB3×2CV 0.02

the corrected K-fold cv t-test is the least powerful procedure, and the K-fold
cv, 5×2 cv t-test and the 5×2 cv F-test are in between. The corrected K-fold
cv t-test reduces the type I error of the K-fold cv t-test through correction;
however, there is a price to be paid for this reduction: lowered power. The
blocked 3×2, 5×2 cv t-tests and the 5×2 cv F-test are much more powerful
than the K-fold cv and corrected K-fold cv t-test, although they look similar.
Especially for Figures 8 and 11, the power curves of blocked 3×2 cv, 5×2
cv t-tests, and the 5×2 cv F-test are almost overlapping. We also note that
the two-fold cross-validation is executed only three times for the blocked
3×2 cv t-test (compared with five times for the 5×2 cv t-test and the 5×2
cv F-test). Therefore, it can result in valuable savings, especially when the
computational cost of running the learning algorithm is high.

6.5 Classification of Real Data Sets. In this section, we carry out ex-
periments on six data sets from the UCI repository. Results show that our
test also has good performance.
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Figure 6: Powers of the tests for the classification of two gaussian populations:
simulation 1.
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Figure 7: Powers of the tests for the classification of two gaussian populations:
simulation 2.

Similar to Alpaydin’s (1999) work, to compare type I error of the five
tests, we use two MLPs (multilayer perceptrons with one hidden layer)
with equal numbers of hidden units. Thus, the null hypothesis is true, and
any rejection is a type I error. To compare type II errors of the five tests, we
take two classifiers that are different: an LP (single-layer perceptron) and
an MLP.
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Figure 8: Powers of the tests for the classification of letters.
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Figure 9: Powers of the tests for the classification of two gaussian populations:
simulation 1.

From Tables 8 and 9, we know that in most cases, the blocked 3×2 cross-
validation has lower type I and type II errors than other commonly used
tests.

6.6 Replicability of Tests. Bouckaert and Frank (2004) considered the
issue that a test may be very sensitive to the random partitioning used in
cross-validation. If this is the case, it is possible that when the same data
are used—the same learning algorithms A and B and the same significance
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Figure 10: Powers of the tests for the classification of two gaussian populations:
simulation 2.
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Figure 11: Powers of the tests for the classification of letters.

test—one researcher may find that method A is preferable, whereas another
may find that the evidence for this is not enough. Lack of replicability can
also cause problems when tuning an algorithm: a test may judge favorably
on the latest modification purely due to its sensitivity to the particular
random number seed used to split the data. And Bouckaert (2005) shows
that low replicability of machine learning experiments is not a phenomenon
of small data sets. In this section, we study the replicability of five tests in a
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Table 8: Probabilities of Type I Error.

Data Set Hidden Units tCV tCCV t5×2CV F5×2CV tB3×2CV

Iris 3 0.145 0.130 0.030 0.010 0.001
10 0.205 0.205 0.049 0.006 0.003
20 0.244 0.244 0.051 0.005 0.004

Vowel 5 0.034 0.015 0.029 0.013 0.001
10 0.050 0.026 0.037 0.010 0.002
20 0.042 0.018 0.029 0.005 0.000

Thyroid 10 0.044 0.027 0.019 0.002 0.000
Seed 10 0.077 0.076 0.038 0.007 0.002

20 0.081 0.081 0.029 0.008 0.001
Heart-statlog 5 0.100 0.083 0.026 0.012 0.002

10 0.050 0.032 0.021 0.001 0.001
20 0.033 0.013 0.035 0.009 0.001

Balance 5 0.051 0.031 0.036 0.005 0.001
10 0.056 0.039 0.030 0.007 0.001
20 0.053 0.043 0.032 0.009 0.000

Table 9: Probabilities of Type II Error.

Data Set Hidden Units tCV tCCV t5×2CV F5×2CV tB3×2CV

Iris 3 0.142 0.127 0.076 0.029 0.000
10 0.187 0.186 0.034 0.003 0.002
20 0.148 0.148 0.032 0.003 0.006

Vowel 5 0.129 0.057 0.181 0.131 0.066
10 0.063 0.028 0.104 0.043 0.014
20 0.042 0.016 0.052 0.012 0.006

Thyroid 10 0.075 0.053 0.085 0.037 0.011
Seed 10 0.092 0.086 0.081 0.022 0.012

20 0.089 0.083 0.054 0.021 0.015
Heart-statlog 5 0.082 0.063 0.034 0.011 0.003

10 0.074 0.046 0.022 0.009 0.004
20 0.067 0.032 0.033 0.011 0.021

Balance 5 0.054 0.038 0.050 0.016 0.011
10 0.119 0.043 0.143 0.089 0.133
20 0.147 0.049 0.259 0.198 0.312

realistic setting based on standard data sets taken from the UCI repository
of machine learning problems.

Bouckaert and Frank (2004) first gave the definition of replicability based
on the probability that two runs of the test on the same data set will produce
the same outcome. If we have performed the test based on n different
randomizations for a particular data set, then (

n
2 ) such pairs are found.

Assume that the test rejects the null hypothesis for k(0 ≤ k ≤ n) of the
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Table 10: Replicability for Five Tests.

NB vs LDA

dataset #inst. #atts. tCV tCCV t5×2CV F5×2CV tB3×2CV

balance scale 625 4 3 3 2 0 0
diabetes 768 8 4 3 6 1 0
glass 270 13 7 3 12 11 17
heart 352 34 1 1 1 0 0
ionosphere 150 4 2 0 1 0 2
irirs 148 18 4 4 1 0 0
vehicle 846 19 28 12 50 50 50
wine 178 13 5 5 2 0 1
yeast 1484 9 1 0 0 0 0
seed 210 7 10 2 28 31 44
Replicability 0.817 0.883 0.863 0.913 0.921
Replicability: NB versus Tree 0.784 0.855 0.857 0.925 0.910
Replicability: Tree versus LDA 0.767 0.860 0.798 0.925 0.921

Note: #inst. (#atts.) refers to the number of cases (attributes).

randomizations. Then there are (
k
2 ) rejecting pairs and (

n−k
2 )accepting ones.

Based on this, the above probability can be estimated as R(k, n) = ((
k
2 ) +

(
n−k

2 ))/(
n
2 ) . We can use this probability to form a measure of replicability

across different data sets. Assume that the number of data sets is m, and let
ik(0 ≤ k ≤ n) be the number of data sets for which the test agrees k times
(i.e.,

∑n
k=0 ik = m). Then we define replicability as R = ∑n

k=0
ik
m R(k, n).

To evaluate how replicability affects various tests, we performed exper-
iments on 10 data sets from the UCI repository (see Table 10). We used
naive Bayes (NB), classification tree (CR), and linear discriminant analysis
(LDA). Each test was run 50 times for each pair of learning schemes, and a
5% significance level was used in all tests.

In our experiments, good replicability was obtained using our test and
the 5×2 cross-validation F-test. The value of the replicability measure R is
above 0.9 for these two tests.

7 Conclusion

A new blocked 3×2 cross-validation method is given in our letter. In de-
tail, the method splits a data set into four balanced blocks; two are the
training set and the other two are a test set to implement the two-fold cross-
validation, resulting in three replications of two-fold cross-validations that
are performed. For the six data sets obtained, any two data sets between
different groups (either the training sets or test sets) have the same num-
ber of overlapped samples and better sample balance. Essentially, through a
preliminary design for partitions, this method reduces errors resulting from
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random partitions between different groups; thus, the blocked 3×2 cross-
validation estimator of generalization error has a smaller variance. Then
a variance estimator is given. We show using simulations that the t-test
using this new variance estimator has better performance. We compared
the new method with the 5×2 cross-validated t-test (F-test) recommended
by Dietterich (1998) and Alpaydin (1999) and found that the performance
of our test is comparable to that of 5×2 cross-validated tests but with less
computational complexity. The computational cost of running the learn-
ing algorithm is higher, especially in natural language processing. In this
case, in order to obtain the balance of corpus and number of overlapped
samples, the corpus partition is easier to implement using blocked 3×2
cross-validation than random two-fold partition. This method has been ap-
plied to semantic role labeling task in natural language processing and has
good results.

Based on this idea, several natural problems are found. If five replications
(or more) of two-fold cross-validations are performed, how can data be split
such that each overlaps between the data with the same number (i.e., data
sets between different groups yield balance property)? Can the balanced
cross-validation with minimum variance be proved? For a given data set,
how many balanced partitions are there? How can these balanced partition
be identified? These questions are worthy of further study.

Acknowledgments

We thank Wanquan Liu and Chaohua Dong for constructive discussions.
This work was supported by National Natural Science Fund of China
(60873128). Experiments were supported by High Performance Comput-
ing System of Shanxi University.

References

Alpaydin, E. (1999). Combined 5×2 cv F test for comparing supervised classification
learning algorithms. Neural Computation, 11, 1885–1892.

Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). Cambridge, MA: MIT
Press.

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of K-fold
cross-validation. Journal of Machine Learning Research, 5, 1089–1105.

Bouckaert, R. R. (2005). Low replicability of machine learning experiments is not a
small data set phenomenon. In Proceedings of the ICML-2005 Workshop on Meta-
learning.

Bouckaert, R. R., & Frank, E. (2004). Evaluating the replicability of significance tests
for comparing learning algorithms. In Proceedings of the 8th Pacific-Asia Conference
(pp. 3–12). Berlin: Springer.

Chen, W., Gallas, B. D., & Yousef, W. A. (2012). Classifier variability: Accounting for
training and testing. Pattern Recognition, 45, 2661–2671.



Blocked 3×2 Cross-Validated t-Test 235

Dietterich, T. (1998). Approximate statistical tests for comparing supervised classifi-
cation learning algorithms. Neural Computation, 10, 1895–1924.

Grandvalet, Y., & Bengio, Y. (2006). Hypothesis testing for cross-validation (Tech. Rep.
1285). Montreal: University of Montreal.

Li, J. (2010). Research on techniques of automatic semantic role labeling of Chinese frame-net.
Unpublished doctoral dissertation, Shanxi University.

Li, J., Wang, R., Wang, W., & Li, G. (2010). Automatic labeling of semantic roles on
Chinese frame-net. Journal of Software, 30, 597–611.

Markatou, M., Tian, H., Biswas, S., & Hripcsak, G. (2005). Analysis of variance of
cross-validation estimators of the generalization error. Journal of Machine Learning
Research, 6, 1127–1168.

Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine
Learning, 52, 239–281.

Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In Pro-
ceedings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 42–49). New York: ACM.

Yildiz, O. T. (2013). Omnivariate rule induction using a novel pairwise statistical test.
IEEE Transactions on Knowledge and Data Engineering, 25, 2105–2118.

Received July 16, 2012; accepted July 21, 2013.



Copyright of Neural Computation is the property of MIT Press and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.


