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Confidence Interval for F; Measure of Algorithm
Performance Based on Blocked 3x2
Cross-Validation

Yu Wang, Jihong Li, Yanfang Li, Ruibo Wang, and Xingli Yang

Abstract—In studies on the application of machine learning such as Information Retrieval (IR), the focus is typically on the estimation
of the F; measure of algorithm performance. Approximate symmetrical confidence intervals constructed by the F; value based on
cross-validated ¢ distribution are commonly used in the literature. However, theoretical analysis on the distribution of F} values shows that
such distribution is actually non-symmetrical. Thus, simply using symmetrical distribution to approximate non-symmetrical distribution
may be inappropriate and may result in a low degree of confidence and long interval length for the confidence interval. In the present
study, a non-symmetrical confidence interval of the F; measure based on Beta prime distribution is constructed by using the F} value
computed based on the average confusion matrix of a blocked 3 x 2 cross-validation. Experimental results show that in most cases, our
method has high degrees of confidence. With an acceptable degree of confidence, our method has a shorter interval length than the
approximate symmetrical confidence intervals based on the blocked 3 x 2 and 5 x 2 cross-validated ¢ distributions. The approximate
symmetrical confidence interval based on the 10-fold cross-validated ¢ distribution has the shortest interval length of the four confidence
intervals but with low degrees of confidence in all cases. Taking these two factors into consideration, our method is recommended.

Index Terms—Blocked 3 x 2 cross-validation, F; measure, confidence interval, Beta prime distribution

1 INTRODUCTION

N applications of machine learning such as Information

Retrieval (IR) or natural language processing (NLP),
the standard measure for algorithm performance is the F;
measure, which is defined as the harmonic average of
precision and recall. When applying a learning algorithm,
the focus is typically on the estimation of the F; measure
of algorithm performance. The point estimation is rather
trivial, and the estimation accuracy is always measured
based on the mean square error. Confidence interval is a
simpler and more intuitive method than point estimation
in terms of measuring estimation accuracy ([1], [2]).
Researchers often test the significance of the differences
between two classifiers in comparing classifiers based on
the 1 measure by examining whether the corresponding
confidence intervals cross ([3], [4]).

Thus, for effectively measuring the performance of
algorithm, it is very important to construct a faithful con-
fidence interval with a high degree of confidence (DOC)
and short interval length (IL). The degree of confidence of
a confidence interval is the probability of the inclusion of
the I7 true value in the confidence interval. Interval
length indicates the accuracy of the confidence interval.
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Approximate symmetrical confidence intervals for the F;
measure based on the F} value computed by using the
confusion matrix are commonly used in the literature.
However, theoretical analysis on the distribution of Fj
values shows that such distribution is actually non-sym-
metrical. Thus, the use of symmetrical distribution, such
as the commonly used t distribution, may be inappropri-
ate to approximate non-symmetrical distribution.

In practice, to be able to eliminate the effect by chance
(e.g., variance due to small changes in the training set), typi-
cally, one does training and validation a number of times,
possibly by various forms of cross-validation ([3], [5], [6],
[71, [8], [9], [10]). Thus, confidence intervals based on cross-
validations are often used to estimate algorithm performan-
ces for the F; measure. In particular, [10] proposed a new
blocked 3 x 2 cross-validation and demonstrated that it is
comparable with the test based on the 5 x 2 cross-validation
but with less computation complexity, and the 5 x 2 cross-
validated test is slightly more powerful than the 10-fold
cross-validated t-test shown by [5]. Thus, we apply blocked
3 x 2 cross-validation in this study for the [} measure. An
exact percentile of the F; value based on the average con-
fusion matrix of the blocked 3 x 2 cross-validation and
the corresponding non-symmetrical confidence interval
of the F; measure based on Beta prime distribution are
provided through a theoretical analysis of the F} value
distribution.

The remainder of this study is organized as follows.
Section 2 defines the standard F; measure of algorithm
performance and the F; value estimation based on the
confusion matrices of the blocked 3 x 2 cross-validation.
Non-symmetrical confidence interval based on the
blocked 3 x 2 cross-validated Beta prime distribution
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proposed in this study and approximate symmetrical
confidence intervals based on the blocked 3 x 2 cross-
validated ¢ distribution, the 5 x 2 cross-validated ¢ distri-
bution, and the 10-fold cross-validated ¢ distribution are
described in Sections 3 and 4, respectively. Section 5 dis-
cusses the simulated experiments that show how the con-
fidence intervals behaves compare. Section 6 concludes
the study.

2 MEASURES OF PERFORMANCE

In studies on machine learning, multiple measures can be
employed to assess the performance of learning algorithms.
These measures include accuracy, precision, recall, F-score,
Receiver operating characteristics (ROC) and Area under
the ROC curve (AUC) ([11], [12], [13]). In this study, we
focus on a commonly used performance indicator called F;
measure, which refers to the harmonic average of precision
and recall.

2.1 Standard F; Measure

Without loss of generality, we only consider the following
simple setting (two class classification problem): each object
is associated with a binary label [ which accounts for the
correctness of the object with respect to the task at hand. In
addition, the classification algorithm produces an predic-
tion z indicating whether it believes the object to be correct
or not. Then precision may be defined as the probability
that an object is relevant given that it is returned by the sys-
tem, while the recall is the probability that a relevant object
is returned (see [14]):

p=Pl=+|z=4), r=Plz=+|l=+4). (1)

In order to summarize these two values, it is common to
consider the so-called F; measure. It is described as the har-
monic average of precision and recall:

/L[ N\ 20per
n-hel) 55 @

2.2 F; Value Based on Confusion Matrix

For a specific two class classification problem, the experi-
mental outcome may be conveniently summarised in a
2 x 2 confusion matrix:

Pridicted class
+ —
True + P FN
class — FP TN

where TP (resp. TN) is the number of true positives (resp.
negatives) and FP (resp. FN) the number of false positives
(resp. negatives). From these counts, one can obtain the pre-
cision (p), recall (r) and F; value:

TP
~ TPt FP’

TP

P "TTP+FN’

27TP

="
"7 2TP+ FP+FN

3)

TABLE 1
Blocked 3 x 2 Cross-Validation

Group Training set Test set (1)

Qg
1 DV =p,p) TV =(P,P) Al
1 D’ =(p,p) T =(P,p) A
2 DY = (P, P) T = (P, P)
2 DY =(P,pPy) T =(PLPy) Ay
3 DY = (P, Py) ¥ = (P, Py) Y
3 DY = (P, P;) ) = (P.P)

It is obvious that the F7 value is an estimation of the theo-
retical I, measure.

2.3 Average F; Value Based on the Blocked 3 x 2
Cross-Validation

To test the significance of the differences between two algo-

rithms, [5], [6], [9] proposed a random 5 x 2 cross-validation

method based on loss function and demonstrated that its

performance is (slightly) better than the 10-fold cross-vali-

dation by simulated experiments.

However, [10] found that an accurate theoretical expres-
sion of variance for a random 5 x 2 cross-validation can not
be obtained, thereby causing difficulty in the corresponding
variance estimation. Furthermore, they show that this is
due to the different number of overlapped samples between
training sets in five replications of 5 x 2 cross-validation. [8]
theoretically proved that the number of overlapped samples
from any two training sets follows a hypergeometric distri-
bution and that the mathematical expectation is % (n is the
sample size). Based on this, a new blocked 3 x 2 cross-vali-
dation was proposed. This method was asserted to mitigate
the effect of the number of overlapped samples such that
the covariance between different replications becomes theo-
retically identical. Simulated results demonstrated that it is
comparable with the test based on the 5 x 2 cross-valida-
tion, but with less computation complexity.

In detail, the blocked 3 x2 cross-validation relies on a pre-
liminary partitioning of data into 4 blocks of approximately
equal cardinality to implement three replications of two-
fold cross-validation. Formally, the data set D is split into
four disjoint and equal-sized blocks, denoted as FPj,j =
1,2, 3,4. The combination of any two P;s will result in three
groups and six different combinations shown in Table 1.

Here, DECI),’L. =1,2,3,k=1,2 denotes the training set,
T,SI),Z' =1,2,3,k=1,2 denotes the test set. However, they
are as a training or test set with each other, thus
D(li> = sz, Dg” = Tl(i)J =1,2,3. The average F; value based
on the blocked 3 x 2 cross-validation is defined as the aver-
age of the F} scores on three groups:

i _lili 20 =1
ﬂ3x2*3_ 24 My =3
where F} (A(Dg)), TA(L)) is the F} score returned by algorithm

A trained on the set D,(:) and tested on Tk@ for i =
1,2,3, k=1,2.

2 . .
3. RAE) T, @
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3 NON-SYMMETRICAL CONFIDENCE INTERVAL FOR
THE 7 MEASURE BASED ON THE BLOCKED
3 x 2 CROSS-VALIDATED BETA PRIME
DISTRIBUTION

In this section, a non-symmetrical confidence interval based
on the blocked 3 x 2 cross-validated Beta prime distribution
is provided by studying the distribution of the F; value
based on the average confusion matrix of the blocked 3 x 2
cross-validation. [14] revealed that the distributions of
precision (p) and recall (r) based on blocked 3 x 2 cross-
validation have the following forms:

Lemma 1.
P(p| D) < P(D|p)P(p) = p"™" (1 — p)fF !

that is, p| D ~ Be(TP + A, F'P + X)(Beta distribution), where
P(p) is the prior distribution and p~ Be(\\),D =
(TP, FP, FN,TN) is the average of the corresponding elements
of six confusion matrices of the blocked 3 x 2 cross-validation.
A similar development yields the posterior distribution for the
recall: | D ~ Be(TP + A\, FN + \).

Lemma 2. Given two variables with Gamma distributions
X ~T(a,h) and Y ~ I'(B, h), with identical shape parameter
h, three interesting properties hold:
1) Ve>0,cX ~ T (a,ch);
2) X+Y ~T(a+B,h);
3) XLH, ~ Be(a, B).
Lemma 2 is reported in [14]. For readers’ convenience, it
is listed here.

Proposition 1. The density function of the F value based on the
blocked 3 x 2 cross-validation takes the form

20(1 — )" (2 — t) !

1
BlaD) ,0<t<, (5)

p(t) =

where B is a Beta function with parameters a = FP + FN +
2Xand b=TP + A

Proof. Lemma 1 and 2 enable us to postulate that the pos-
terior distributions of p and r, which are Beta distribu-
tions, arise from the combination of independent
Gamma variates:

X X

“X+vy T X+2

with X ~I'(TP + \,1),Y ~I'(FP + \,1)and Z ~ I'(FN +
A, 1). Combining these in the F; value expression, and

using the fact that U = 2.X is a Gamma variate and that
V =Y + Zis also a Gamma variate, we get:

U
TU+V

with U ~ [(TP + A, 2),V ~ [(FP + FN + 2),1).
Notably, UL/Q follows a Beta prime distribution Be’
(FP+ FN +2X\, TP+ X). We thus obtain the density
/ 1.

funCtion Of F] = —
U+V 1. V-
+ 1+4 i)

p

Iy

where B is a Beta function with parameters a = FP +
FN+2X and b=TP + \. 0

We can also deduce the percentile of the distribution of
the F value from the percentile of the Beta prime distribu-
tion, i.e.,

1

Fly=— .
! l—i—%Be’l_a

(6)

The resulting confidence interval based on the Beta
prime distribution is

Clppasacy) = [Flaj2; Fii-ap2]- )

Corollary 1. The density function p(t) is a unimodal function
when a > 1 and b > 1. This function reaches the maximum at
t = —(1/2)b— (1/4)a+ (5/4) + (1/4)V4b? + 4dab— 4b +
a® — 10a + 9 (mode).

Corollary 2. The density function p(t) is non-symmetrical. For
mode(Fy) = 0.5, the area under the function p(t) at t between
0 and 0.5 is larger than that at t between 0.5 and 1, i.e., the
expectation of the I value is smaller than its mode at mode
(Fy) =0.5.

Fig. 1 demonstrates the shape of the density curve of
the F} value with the changes in parameters a and b.
This finding further validates the unimodal and non-
symmetrical properties of p(t). Thus, Corollaries 1 and 2
and Fig. 1 also show that simply using symmetrical dis-
tribution, such as commonly used Normal or ¢ distribu-
tion to approximate non-symmetrical distribution may be
inappropriate.

The following simulated experiments further validate
the extent of the non-symmetry of the density curve.
Skewness is a standard measure that generally has the
following two forms:

1) The skewness of a random variable X is the third stan-
dardized moment, defined as

_ B(X-BX))
B B - oo v

2) Pearson suggested a simple calculation as a measure of
skewness:

E(X) — Mode(x)

SKy =
Var(X)

(9)

Notably, the exact expressions of E(X), E(X — E(X))?
and E(X — E(X))® can not be obtained and are thus
replaced by sample central moments. For a sample of n val-
ues, we have the sample skewness

n —\3
mzpl(% —7)

o
T L - “m
SK, = (11
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Fig. 1. Density curves of the F; value with different combinations of ¢ and b.

Simulated experiment 3.1. Changes in skewness with vary-
ing sample sizes

First, we can obtain the observed TP, FP,FN and TN
with different values p,r and accuracy. The parameters a
and b are then obtained. Thus, the sample moments are
computed based on 10,000 samples. The replicated times
are 1,000. We now look at the changes in skewness for
n = 50, 200, 800, 2,000, 6,000.

From Table 2, we know that with increasing sample
capacity, the skewness SK; and SK, gradually decrease in
all cases. This observation indicates that symmetrical distri-
bution may be used to approximate non-symmetrical distri-
bution in case of a large sample. However, large skewness
occurs in a small sample.

Simulated experiment 3.2. Changes in skewness with vary-
ing modes

This simulation examines the changes of skewness in
various cases for mode = 0.3,0.4,0.45,0.5,0.6,0.8,0.9,0.95.
Results are shown in Table 3.

Table 3 shows that the initial decrease and subsequent
increase in skewness values correspond to an increase in
modes. Skewness reaches the minimum when the mode
value is between 0.40 and 0.50. In practical applications, we
always aim to obtain a high F; value. However, the skew-
ness becomes large as the mode of F value increases. This

VOL.27, NO.3, MARCH 2015

Q |

Lo — (ab)=(500,500) |

—- (a,b)=(200,800) \

o - - (a,b)=(800,200) :

< i

I

I

o | i

= @ !

o I

S | :

N |I| |||

.| hn

i I

o "y 1

— ' h

" h

] l. I

[ I

[ Iy

O — L "
[ | I [ [ I

0.0 04 0.8

t

finding also suggests that a large bias may arise from the
use of symmetrical distribution to approximate non-sym-
metrical distribution at a high F value.

4 APPROXIMATE SYMMETRICAL CONFIDENCE
INTERVAL FOR THE F; MEASURE

Approximate symmetrical confidence intervals (statistical
test of significance) are widely used in the literature ([3],
[15], [16], [17]). We present three different techniques to per-
form inference in this section. The approximate symmetrical
confidence intervals based on Central Limit Theorem for the
F| measure at confidence level 1 — a will look like

F e [,1 — V3 p+ C\/Eﬂ. 12)

Notably, in Eq. (12), ft is an estimator of the F; measure,
6% is a variance estimator, and c is a percentile from
Student’s ¢ distribution. The only difference between the
three techniques is in the choice of ft, 6% and ¢. We are now
ready to introduce the approximate symmetrical confidence
intervals we will consider in this paper.

Remark. Compared with the non-symmetrical confi-
dence interval based on Beta prime distribution given in the
previous section, the approximate symmetrical confidence

TABLE 2
Skewness Values with Different Experimental Setups for n = 50, 200, 800, 2,000, 6,000
Case ] Case II Case III Case IV CaseV Case VI
n SK, SK, SK, SK, SK, SK, SK, SK, SK, SK, SK, SK
50 -0.047 -0.079 -0.074 —-0.128 —-0.140 —-0253 -0.218 -0416 —-0275 —-0.528 —0.486 —0.950
200 -0.028 -0.052 —-0.042 -0.080 —-0.073 -0.142 -0.140 -0.225 —-0.145 —-0.288 —0.295 —-0.590
800 -0.014 -0.027 -0.021 -0.043 -0.037 -0.073 -0.057 -0.115 —-0.074 -0.148 —0.154 -0.309
2,000 -0.009 -0.019 -0.014 -0.027 -0.024 -0.047 -0.037 -0.075 —-0.047 —0.093 —-0.098 —-0.198
6,000 —-0.006 —-0.010 -0.008 -0.016 -0.014 -0.027 -0.021 -0.043 —-0.027 -0.054 —-0.056 -0.116

where Case I: {p = v = accuracy = 0.5}, Case 1I: {p = 0.6, r = accuracy = 0.5}, Case III: {p = 0.7, r = accuracy = 0.6}, Case IV: {p = 0.8, r = 0.9, accuracy = 0.7},

Case V:{p=0.9,r=accuracy = 0.8}, Case VI: {p = r = accuracy = 0.95}.
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TABLE 3
Skewness Values with Different Experimental Setups for mode = 0.3,0.4,0.45,0.5,0.6,0.8,0.9,0.95
Casel Casell Case III Case IV Case V Case VI
mode 5K, 5K, 5K, 8K, 8K, 8K 5K, 5K 5K, 5K, 5K, 8K
0.30 0.101 0.183 0.031 0.059 0.013 0.027 0.007 0.014 0.055 0.008 0.004 0.001
0.40 0.020 0.043 0.006 0.014 0.002 0.004 0.001 0.002 0.000 0.003 0.000 0.003
045 -0.022 -0.027 -0.007 -0.019 -0.000 —-0.009 -0.003 —0.004 -0.002 —-0.004 -0.001 —0.003
050 -0.062 —-0.095 -0.019 -0.041 -0.011 -0.019 -0.004 -—0.011 —-0.003 —0.002 —0.000 —0.008
0.60 -0.153 —-0.250 -0.048 —-0.094 -0.020 —-0.044 -0.012 -0.021 -0.007 —-0.013 —-0.005 —0.006
0.80 —-0.374 —-0.647 —-0.124 -0249 -0.057 -0.116 -0.027 —-0.057 -0.016 —0.037 —-0.014 —0.024
0.90 —-0.551 -0.993 -0.202 -0.402 -0.094 -0.181 -0.047 -0.090 -0.025 -0.052 —-0.020 —0.042
095 -0.703 —-1.295 -0.293 0578 -0.135 —0.271 -0.068 —-0.139 -0.038 —0.080 —0.030 —0.058

where Case I: {b =10}, Case II: {b = 100}, Case III: {b = 500}, Case IV: {b = 2,000}, Case V: {b = 6,000}, Case VI: {b = 10,000}.

interval may significantly affect the estimation accuracy of
the F| measure in some cases. Notably, the F} value is
between 0 and 1, however, the approximate symmetrical
confidence interval may exceed the range of (0,1). For
example, the simulated experiment in Section 5 shows that
the approximate symmetrical confidence interval based on
a blocked 3 x 2 cross-validated ¢ distribution is [0.84,1.03],
which obviously exceeds the limit value of 1 in the case
of u; = (1,1), 2 = 0.1, n =200, and logistic regression
(LR) classifier.

4.1 Approximate Symmetrical Confidence Interval
Based on the K-Fold Cross-Validated ¢
Distribution

K-fold cross-validation is probably the simplest and most
widely used resampling method. It uses all available exam-
ples as training and test examples, mimics K training and
test sets by using part of the data to fit the model, and a dif-
ferent part to test it. ([7], [10])

First, the data set D is split into K disjoint and equal-
sized blocks, which is denoted as T}, k = 1,2,..., K. Let D,
be the training set obtained by removing the elements in 7j,
from D, then the average F; value based on the K-fold
cross-validation has the following form:

A 1 K R 1 K
Ao =D P = 2 FAD), T, 13)
k=1 k=1

where Fy (A(Dy),T},) is the Fy score returned by algorithm A
trained on the set D and tested on T}, for k=1, ..., K.

The K-fold cross-validated ¢ statistic considers it = jix
2

, s o
to estimate the F}; measure and 6% = £, where szm is the
sample variance of fi;. If we assume that fi, were drawn
independently from a normal distribution, then the con-
fidence interval based on the K-fold cross-validation can

be written as

Clykev) = [ﬂK —tx-11-a/2¢/ 55, /K,
fig +tr 11-a2\/Sh, /K],

where ¢ = tx_;1_q/2 is the percentile from Student’s ¢ distri-
bution with degree of freedom K — 1.

Remak. The difference between the variances of the
K-fold cross-validation based on the F; measure and the loss
function is that the variance of the K-fold cross-validation

(14)

based on the F7 measure can be only decomposed to block
(T},). However, the variance of the K-fold cross-validation
can be decomposed to sample for the loss function.

4.2 Approximate Symmetrical Confidence Interval
Based on the 5 x 2 Cross-Validated ¢
Distribution

Dietterich [5] pointed out that the variance of the K-fold

cross-validation can be underestimated due to the overlap-

ping of training sets. Thus, [5] proposed a random 5 x 2

cross-validation method based on five replications of two-

fold cross-validation and show that it is slightly more power-
ful than the 10-fold cross-validated ¢-test. This method is fur-
ther studied by [6], [9]. In each replication of the 5 x 2 cross-
validation, the available data are randomly partitioned into
two equal-sized sets T\” and 7" i = 1,...,5. Each learning
algorithm is trained on each set and tested on the other set.

This produces cross-validated estimators based on the Fj

measure: F} (A(Tl(L)),TZ(Z)) and FI(A(TQ(Z)),Tfl)),i =1,...,5.

The average [ value of five group replications has the fol-

lowing form

5

. 11 i i i i

e =535 (RAMY), ") + R (A(T), 1)),
=1

(15)

Let S2=(R(AM"), 1) - 1) + (RAM), 1) -

Flm)2 be the sample variance computed from the ith replica-

tion, where F\" =1(F(AT"), 1Y) + Fi(AT), T)). 1f

DY

let i = fl5ys, 6% = =1, under the assumption of normal-
ity the resulting confidence interval is,

Clisxacvy = |Msx2 — t51-a/2

la5><2 + t5~17a/2 (16)

S 85].
i=1

4.3 Approximate Symmetrical Confidence Interval
Based on the Blocked 3 x 2 Cross-Validated ¢
Distribution

Wang et al. [10] proposed a new test method called blocked

3 x 2 cross-validated t¢-test based on the 5 x 2 cross-

validated tests given by [5], [6], [9] and demonstrated that
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its performance is comparable with the test based on the
5 x 2 cross-validation, but with less computation complex-

Z, 1ZA 1<“k

2
—i3x2)

ity. They used i = fi3,9, 67 = , leading
to corresponding confidence interval of
32
Clyzxacy) = |Max2 = t51-a/2 ZZ — fl3x2)* /6,
i=1 k=1
3 2
Pzxa + t51-a/2 ZZ —ft3x2)° /6]
=1 k=1
an

5 SIMULATED EXPERIMENTS FOR COMPARISON

This section performs a simulation study based on simu-
lated and real Letter Recognition data sets to investigate the
degree of confidence and the interval length of the four con-
fidence intervals considered in the previous two sections for
multiple classifiers, such as logistic regression, k nearest
neighbor (KNN), naive Bayes (NB), classification tree (CT)
and support vector machine (SVM). For a given problem,
we generate 1,000 independent data sets to fully take into
account the effect of the randomness of the training set as
well as that of the test examples.

For comparison, we take K = 10 in the approximate sym-
metrical confidence interval based on the K-fold cross-
validated ¢ distribution. We choose A = 1, the uniform prior,
in the non-symmetrical confidence interval based on the
blocked 3 x 2 cross-validated Beta prime distribution. The
number of training samples is n = 200, 600, 6,000 for simu-
lated data and n = 200, 600 for real Letter Recognition data.
The number of test samples is five times that of the training
samples. The confidence level 1 — o = 0.95, i.e., @ = 0.05.

5.1 Simulated Data Comparison

Considering a classification problem with two classes, we
have Z=(X,Y), with Prob(Y =1)= Prob(Y =0) =1,
X|Y =0~ N(py,20), X|Y =1~ N(1,%1). Similar to [3],
we take py = (0,0), %y = I, but take multiple x; and %;.

Tables 4, 5, and 6 show the simulated results of the degree
of confidence and interval length. The non-symmetrical con-
fidence interval based on the blocked 3 x 2 cross-validated
Beta prime distribution has high degrees of confidence in
most cases, i.e., the degree of confidence far exceeds 0.95. For
example, in case I of Table 4, the degrees of confidence of
non-symmetrical confidence interval based on the blocked
3 x 2 cross-validation are 99.5, 99.6, 98.2, 99.5, and 99.7
percent for the CT, LR, SVM, NB, and KNN classifiers,
respectively.

For the CT classifier, the approximate symmetrical
confidence interval based on the blocked 3 x 2 cross-
validated ¢ distribution has acceptable degrees of confidence
in three cases and with three sample sizes. For the four other
classifiers, it exhibits (somewhat) degraded degrees of confi-
dence in 27 of the 36 cases for three sample sizes.

One example is the situation represented by Case II for
LR classifier in Table 6. In this case, the degree of confidence
of the approximate confidence interval based on the blocked

TABLE 4
Degrees of Confidence and Interval Lengths of the
Four Confidence Intervals at n = 200 for Simulated Data

Casel: u; = (0.5,0.5), 31 = I,

ClLaocvy  Clsxacv)y  Clisxecvy Clppaxacy)
CT DOC  90.9% 93.5% 98.2% 99.5%
IL 0.167 0.299 0.276 0.219
LR DOC 91.8% 95.0% 92.9% 99.6%
IL 0.153 0.234 0.184 0.203
SVM DOC 90.8% 94.4% 94.9% 98.2%
IL 0.154 0.230 0.188 0.205
NB DOC 83.1% 91.6% 97.4% 99.5%
IL 0.153 0.227 0.185 0.204
KNN DOC 87.3% 89.7% 94.6% 99.7%
IL 0.161 0.217 0.209 0.219

CaseIl: uy = (1.5,1.5), 3, =21,

Cliaoev)y  Clisxacv)y  Clysxacyy Clppiaxacy)
CT DOC 91.9% 93.8% 97.4% 97.4%
IL 0.123 0.236 0.208 0.173
LR DOC 94.3% 96.4% 97.2% 98.9%
IL 0.087 0.146 0.115 0.124
SVM DOC 90.3% 94.6% 94.7% 98.8%
IL 0.086 0.127 0.102 0.122
NB DOC 94.2% 96.6% 95.3% 98.8%
IL 0.079 0.127 0.096 0.114
KNN DOC 88.1% 91.9% 93.5% 99.5%
IL 0.086 0.114 0.113 0.139

Case III: uq = (1,1), 3y =21,

Cliaocv)y  Clisxacy)y  Clysxacyy Clppiaxacy)
CT DOC 90.1% 94.2% 97.3% 97.1%
IL 0.140 0.273 0.236 0.193
LR DOC 93.8% 96.2% 95.3% 99.5%
IL 0.120 0.188 0.145 0.165
SVM DOC 91.7% 95.2% 92.1% 99.9%
IL 0.121 0.177 0.143 0.164
NB DOC 94.8% 96.0% 94.0% 97.0%
IL 0.096 0.169 0.134 0.152
KNN DOC 88.1% 89.0% 94.5% 98.8%
IL 0.112 0.143 0.148 0.175

3 x 2 cross-validated t distribution is only 88.6 percent,
which is far below 95 percent.

The approximate symmetrical confidence interval
based on the 5 x 2 cross-validated ¢ distribution has
acceptable degrees of confidence in half of the cases. The
approximate symmetrical confidence interval based on
the 10-fold cross-validated ¢ distribution has low degrees
of confidence in all cases.

The degree of confidence is not the only important con-
sideration in choosing a statistical confidence interval.
When the degree of confidence is comparative, the confi-
dence interval is always measured based on the interval
length, i.e., for a given the degree of confidence, a funda-
mental principle for selecting the confidence interval is to
select one with the shortest interval length. Tables 4, 5 and 6
show that with an acceptable degree of confidence, our
method (the non-symmetrical confidence interval based on
the blocked 3 x 2 cross-validated Beta prime distribution)
has shorter interval lengths than the approximate symmetri-
cal confidence intervals based on the blocked 3 x 2 and
5 x 2 cross-validated ¢ distributions in most cases.
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TABLE 5
Degrees of Confidence and Interval Lengths of the
Four Confidence Intervals at n = 600 for Simulated Data

TABLE 6
Degrees of Confidence and Interval Lengths of the
Four Confidence Intervals at n = 6,000 for Simulated Data

Casel: u; = (0.5,0.5), 21 = Iy

Casel: u; = (0.5,0.5), 31 = I,

ClLaocvy  Clsxacv)y  Clisxecv)y  Clppaxacy) ClLaocvy  Clsxacv)y  Clisxecvy Clppaxacy)
CT DOC 89.4% 94.7% 97.4% 98.0% CT DOC 87.0% 96.3% 99.4% 97.0%
IL 0.093 0.171 0.150 0.126 IL 0.034 0.090 0.080 0.040
LR DOC 92.2% 96.2% 95.4% 99.6% LR DOC 94.3% 97.6% 94.2% 99.8%
IL 0.075 0.139 0.102 0.117 IL 0.023 0.045 0.032 0.036
SVM DOC 79.6% 78.2% 72.8% 90.6% SVM DOC 87.5% 95.1% 96.9% 98.9%
IL 0.089 0.132 0.108 0.121 IL 0.029 0.056 0.044 0.040
NB DOC 93.9% 95.8% 94.2% 98.6% NB DOC 88.6% 95.6% 92.4% 99.4%
IL 0.076 0.137 0.105 0.117 IL 0.024 0.044 0.031 0.037
KNN DOC 87.1% 89.6% 93.4% 98.5% KNN DOC 86.8% 88.2% 95.0% 99.2%
IL 0.090 0.121 0.119 0.128 IL 0.028 0.037 0.037 0.041

CaseIl: uy = (1.5,1.5), 3y =21, CaseIl: uy = (1.5,1.5), 3, =21,

Cliaoev)y  Clysxacvy  Clysxacvy Clppiaxacy) Cliaoev)y  Clisxacv)y  Clysxacyy Clppiaxacy)
CT DOC 92.2% 93.9% 97.9% 98.4% CT DOC 86.7% 97.0% 99.5% 98.0%
IL 0.064 0.127 0.109 0.089 IL 0.022 0.054 0.047 0.026
LR DOC 94.6% 96.7% 90.9% 99.7% LR DOC 92.9% 96.4% 88.6% 98.3%
IL 0.044 0.077 0.057 0.066 IL 0.014 0.024 0.017 0.020
SVM DOC 91.5% 95.1% 92.4% 99.3% SVM DOC 91.0% 96.5% 96.9% 99.3%
IL 0.049 0.073 0.055 0.067 IL 0.017 0.031 0.025 0.023
NB DOC 92.5% 96.4% 90.6% 99.9% NB DOC 91.2% 96.3% 91.8% 99.6%
IL 0.045 0.071 0.052 0.061 IL 0.012 0.022 0.016 0.018
KNN DOC 82.7% 88.9% 92.8% 99.0% KNN DOC 88.3% 88.8% 92.6% 98.2%
IL 0.049 0.064 0.066 0.078 IL 0.015 0.019 0.021 0.024

CaseIIl: uq = (1,1), 3y =21, CaseIll: uy = (1,1), 3y =21,

Clioev)y  Clysxacvy  Clysxacyy Clppaxacy) Cliaocv)y  Clisxacy)y  Clysxacyy Clppiaxacy)
CT DOC 90.5% 92.9% 96.2% 95.5% CT DOC 84.2% 97.1% 98.6% 98.4%
IL 0.076 0.144 0.125 0.103 IL 0.031 0.082 0.070 0.032
LR DOC 93.2% 96.9% 93.4% 98.5% LR DOC 91.2% 96.1% 93.9% 99.7%
IL 0.067 0.109 0.080 0.093 IL 0.019 0.035 0.025 0.028
SVM DOC 87.7% 90.5% 89.8% 96.3% SVM DOC 91.2% 96.8% 97.4% 99.4%
IL 0.071 0.104 0.081 0.096 IL 0.024 0.048 0.037 0.033
NB DOC 93.9% 96.5% 94.6% 99.4% NB DOC 82.0% 92.5% 92.5% 99.7%
IL 0.053 0.097 0.070 0.084 IL 0.017 0.030 0.021 0.026
KNN DOC 87.1% 89.2% 94.1% 99.6% KNN DOC 87.0% 86.3% 93.7% 99.1%
IL 0.065 0.082 0.083 0.100 IL 0.021 0.026 0.027 0.032

If only the interval length is considered, the approxi-
mate confidence interval based on the 10-fold cross-
validated t distribution is better than the three other
methods. Hence, if the goal is to be confident that the
shorter interval length is the better confidence interval,
then the approximate confidence interval based on the
10-fold cross-validation may be the best choice, even
though its degree of confidence is unacceptable.

5.2 Real Letter Recognition Data Comparison

A data set from UCI database for identifying the letters of
the roman alphabet comprises 20,000 examples described
by 16 features. The 26 letters represent 26 categories, simi-
lar to [3], [10], who turned it into a two-class (A-M vs. N-
Z) classification problem. We sample, with replacement,
200 (600) examples from the 20,000 examples available in
the Letter Recognition data. Repeating this 1,000 times,
we then compute the degrees of confidence and interval
lengths of the four confidence intervals based on 1,000
sets of data obtained.

Similar to the simulated data situation, the non-symmet-
rical confidence interval based on the blocked 3 x 2 cross-
validated Beta prime distribution has high degree of confi-
dence except for the case with n = 600 and KNN classifier,
as shown in Table 8. The approximate confidence interval
based on the 10-fold cross-validated ¢ distribution and 5 x 2
cross-validated ¢ distribution have degrees of confidence
with less than 95 percent in most cases. Tables 7 and 8
exhibit that of the two confidence intervals based on the
blocked 3 x 2 cross-validation with acceptable degrees of
confidence, our method has the shortest interval length.
Similarly, if degree of confidence is not considered, the
approximate confidence interval based on the 10-fold cross-
validated ¢ distribution has the shortest interval length of
the four confidence intervals.

6 CONCLUSIONS

We presented a new perspective on the confidence interval
for the F} measure. This view, grounded on a Beta prime
distribution rather than on the traditional ¢ distribution,
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TABLE 7
Degrees of Confidence and Interval Lengths of the
Four Confidence Intervals at n = 200 for Real Data

TABLE 8
Degrees of Confidence and Interval Lengths of the
Four Confidence Intervals at n = 600 for Real Data

ClLaocvy Clisxacvy Clisxacvy Clppaxacy) ClLiocvy Clisxacvy Clisxacvy  Clppaxacy)
CT DOC 89.8% 91.5% 97.9% 97.1% CT DOC 85.9% 94.2% 97.7% 97.3%
IL 0.158 0.312 0.279 0.214 IL 0.085 0.168 0.150 0.115
LR DOC 92.2% 91.6% 95.6% 97.9% LR DOC 93.1% 94.4% 95.2% 98.9%
IL 0.150 0.230 0.204 0.204 IL 0.084 0.137 0.110 0.114
SVM DOC 87.4% 94.2% 96.7% 98.9% SVM DOC 86.0% 86.7% 85.4% 96.2%
IL 0.150 0.249 0.210 0.205 IL 0.090 0.141 0.117 0.121
NB DOC 93.7% 94.1% 97.4% 99.0% NB DOC 94.5% 96.6% 98.0% 99.6%
IL 0.153 0.241 0.212 0.206 IL 0.086 0.156 0.123 0.116
KNN DOC 88.9% 87.7% 93.7% 96.4% KNN DOC 81.1% 77.4% 81.3% 82.0%
IL 0.140 0.213 0.198 0.200 IL 0.066 0.109 0.100 0.099

enables the consideration of the construction of a new non-
symmetrical confidence interval under the principle of
selecting that with the shortest interval length for a given
degree of confidence. Such interval may be more reasonable
than the commonly used symmetrical approximate confi-
dence intervals.

To develop this view, we further showed how the pro-
posed confidence interval outperformed the other approxi-
mate symmetrical confidence intervals through simulated
experiments. In studies on machine learning, researchers
are also interested in testing the significance of the differ-
ence of algorithm performances. ([3], [5], [6], [10], [18], [19])
Thus, further study on the use of the proposed confidence
interval in comparisons of algorithms is being conducted.

APPENDIX A
PROOF OF COROLLARY 1
To prove the unimodal property of p(t), we only prove that
p(t) is monotonically increasing for 0 < ¢t < mode(F;) and
monotonically decreasing for mode(F)) <t <1 when a > 1
and b > 1.

Notably, the derivative of p(t) has the form

_ t)a—2(2 _ t)—a—b—1t572
B(a,b)
[—2* 4+ (—a — 2b + 5)t + 2(b — 1)],

a a—2 —a—b—1,b—2
and obviously, the 2 d-) g(;?) 2250 for 0<t<1.

Thus we only need to consider the function —2¢* +
(—a—2b+5)t+2(b—1), which is denoted as f(¢). When
b>1, (—a—2b+5)* —4(—2)2(b— 1) > 0, and the solutions
of f(t) exist. Obviously, we have the solutions

(~a—2b+5)—\/(~a—20+5)7 +16(b - 1)
I

(—a—2b+5)+/(~a—20+5)7 +16( - 1)
<0< 1 .

(—a—20+5)+y/ (—a—2b+5)>+16(b—1)
If I

pleted. When a > 1, <1,1ie., p(t)
is monotonically increasing for 0 <t < mode(F;) and

<1, then the proof is com-

(—a—2b+5)+1/ (—a—2b+5)+16(b—1)
4

monotonically decreasing for mode(F}) <t <1 when a > 1
and b > 1.

APPENDIX B

PROOF OF COROLLARY 2

If p(t) is symmetrical, p(t) =p(2t) —t) for arbitrary
0 < t <ty = mode(F}). Notably, p(t) does not include a con-
stant term. However,

20(1 — (2t — 1)) (2 — (2t — £)) (2t — t)"!
B(a,b)

for ¢y # 1/2 includes a nonzero constant term. Obviously

p(t) = p(2ty) —t) can not be obtained. Thus p(t) is non-

symmetrical for ¢y, # 1/2. When ¢, = 1/2, we have a = 2b.

Thus

p(2ty —t) =

21— )

b1 _ 4\0—1i0—1 )
p(l—t) = %(1 + 1),

Similarly, (2—1¢)"*(1—1¢)" includes a nonzero constant

term, but (1 + ¢)~*"#* does not include a constant term. Thus

p(t) # p(1 —t) fortyg = 1/2.
Noting that

p(t) 1—t (1+1t)°7 —tt 25 +2t4+1 b
p(l1—1t) B [ t (Q_t)3} - [—t4+6t3 — 12¢2 +8t}
the proof is completed if we can prove % >1
for arbitrary 0<t¢<0.5. Let g(t)=—t'—2t3+2t41-
(—t* + 6> — 12> + 8t) = —813 + 12¢> — 6t + 1. We then have
g(t) = —24t2 424t —6 = —6(2t — 1) <0, ie, g(t) is a
monotonically decreasing function. Along with the fact that

9(0.5) =0, we have g(t) > 0 for 0 < t < 0.5. Consequently,

—t1-26342141
—t446t3—126248t — 1
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