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In typical machine learning applications such as information retrieval,
precision and recall are two commonly used measures for assessing an
algorithm’s performance. Symmetrical confidence intervals based on
K-fold cross-validated t distributions are widely used for the inference
of precision and recall measures. As we confirmed through simulated
experiments, however, these confidence intervals often exhibit lower
degrees of confidence, which may easily lead to liberal inference results.
Thus, it is crucial to construct faithful confidence (credible) intervals for
precision and recall with a high degree of confidence and a short interval
length. In this study, we propose two posterior credible intervals for pre-
cision and recall based on K-fold cross-validated beta distributions. The
first credible interval for precision (or recall) is constructed based on the
beta posterior distribution inferred by all K data sets corresponding to K
confusion matrices from a K-fold cross-validation. Second, considering
that each data set corresponding to a confusion matrix from a K-fold
cross-validation can be used to infer a beta posterior distribution of
precision (or recall), the second proposed credible interval for precision
(or recall) is constructed based on the average of K beta posterior
distributions. Experimental results on simulated and real data sets
demonstrate that the first credible interval proposed in this study almost
always resulted in degrees of confidence greater than 95%. With an
acceptable degree of confidence, both of our two proposed credible inter-
vals have shorter interval lengths than those based on a corrected K-fold
cross-validated t distribution. Meanwhile, the average ranks of these two
credible intervals are superior to that of the confidence interval based on
a K-fold cross-validated t distribution for the degree of confidence and
are superior to that of the confidence interval based on a corrected K-fold
cross-validated t distribution for the interval length in all 27 cases of
simulated and real data experiments. However, the confidence intervals
based on the K-fold and corrected K-fold cross-validated t distributions
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are in the two extremes. Thus, when focusing on the reliability of the
inference for precision and recall, the proposed methods are preferable,
especially for the first credible interval.

1 Introduction

There are multiple candidate models (i.e., algorithms) for a typical machine
learning application and we need to choose one or several among many. In
classification tasks with two classes of supervised learning, this is done by
comparing the misclassification error, which is the sum of false positives
and false negatives. However, as Yildiz, Aslan, and Alpaydin (2011) pointed
out, misclassification error does not make a distinction between false pos-
itives and false negatives. Thus, many other performance measures have
been proposed to evaluate candidate models, such as precision and recall.
Precision and recall that are based on a binary contingency table are two
measures that are commonly used in machine learning applications such
as information retrieval (see Tables 1 and 2).

In practice, to be able to eliminate the effect by chance (e.g., variance due
to small changes in the training set), one typically does training and vali-
dation a number of times, possibly by various resampling methods such as
cross-validation and bootstrap (Alpaydin, 1999; Bengio & Grandvalet, 2004;
Dietterich, 1998; Efron & Tibshirani, 1993; Hastie, Tibshirani, & Friedman,
2001; Markatou, Tian, Biswas, & Hripcsak, 2005; Nadeau & Bengio, 2003;
Wang, Wang, Jia, & Li, 2014; Yildiz, 2013). For example, after deriving K
training and validation sets, classification algorithms are trained with the
K training sets, and K confusion matrices are subsequently obtained based
on the validation sets (Bengio & Grandvalet, 2004; Markatou et al., 2005;
Moreno-Torres, Saez, & Herrera, 2012). Then the precision and recall values
can be calculated based on the K confusion matrices from K-fold cross-
validation, and these are commonly evaluated with two measures: the mi-
croaverage and the macroaverage. The so-called microaveraged precision
(or recall) is computed based on the average of the corresponding elements
of K confusion matrices, while macroaveraged precision (or recall) is the
average of K precisions (or recalls) computed by each confusion matrix.

Traditionally, when applying a learning algorithm in machine learning,
the focus is typically directed at the the single-point micro- and macroav-
eraged precision and recall values of the algorithm’s performance from a
K-fold cross-validation. However, as Wang, Li, Li, Wang, and Yang (2015)
pointed out, point estimations are rather trivial and do not consider vari-
ations of the estimation. In response to this, symmetrical confidence inter-
vals based on K-fold cross-validated t distributions have been proposed.
As we confirmed through simulated experiments, however, these confi-
dence intervals often exhibit lower degrees of confidence and short interval
lengths (see section 4). This may easily lead to liberal inference results.
When confidence intervals are used to compare the performance of two
algorithms, for example, the results can be misleading insofar as they can
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Table 1: Contingency Table for a Two-Class Classification Problem.

Predicted Class
Positive Negative Sum

True Positive TP FN P′
class Negative FP TN N′

Sum P N

Note: TP (resp. TN) is the number of true positives
(resp. negatives) and FP (resp. FN) the number of
false positives (resp. negatives).

Table 2: Performance Measures.

Name Formula

Error (FP + FN)/(TP + FP + TN + FN)
Precision TP/(TP + FP)
Recall TP/(TP + FN)
F1 score 2TP/(2TP + FP + FN)
Sensitivity TP/(TP + FN)
Specificity TN/(FP + TN)
True positive rate TP/(TP + FN)
False positive rate FP/(FP + TN)
Matthews correlation coefficient TP ∗ TN − FP ∗ FN√

P ∗ N ∗ P′ ∗ N′

imply that two algorithms are significantly different when in fact they are
not.

Furthermore, a theoretical analysis of the posterior distributions of pre-
cision and recall in Goutte and Gaussier (2005) shows that they follow a
beta distribution. As such, these distributions are always nonsymmetrical,
owing to the occurrence of two different parameters in the beta distribu-
tion, as shown in Figure 1. Of course, when these two parameters are the
same, a beta distribution is symmetrical, but this might not always occur
because there will always be an unequal number of true positives (TPs) and
false positives (FPs) (or false negatives, FNs) in practical applications. (See
Goutte & Gaussier, 2005, and Wang et al., 2015.) Consider case finding for
rare diseases as a practical example. In case finding, a good case-finding
model may always have FP � TP (due to class imbalance) and FN � TP.
Meanwhile, symmetrical confidence intervals may significantly affect the
estimation accuracy of the confidence interval in some cases. This is be-
cause the values of precision and recall range between 0 and 1, whereas
the symmetrical confidence interval can exceed the range of (0, 1) (Wang
et al., 2015). Thus, the use of a symmetrical distribution, such as the com-
monly used t distribution, may be inappropriate for approximating the
distribution of precision and recall, and this can result in large bias and a
critically false conclusion.
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Figure 1: Density curves of beta distribution B(a, b) with different parameter
combinations of a and b.

To effectively measure the performance of an algorithm, it is crucial to
construct faithful confidence (credible) intervals for precision and recall—
that is, intervals with a high degree of confidence and a short interval length.
In Bayesian statistics, credible intervals are analogous to confidence inter-
vals in frequentist statistics. The degree of confidence of a credible interval
is the probability of the inclusion of the true value in the credible inter-
val. Interval length indicates the accuracy of the credible interval. Thus,
in this study, two posterior credible intervals for precision and recall are
constructed based on a K-fold cross-validated beta distribution.

The remainder of this study is organized as follows. Section 2 defines
the standard precision and recall measures of an algorithm’s performance
and then gives their (single-point) estimations based on a K-fold cross-
validation. Two credible intervals based on K-fold cross-validated beta dis-
tributions proposed in this letter and confidence intervals based on K-fold
and corrected K-fold cross-validated t distributions are described in sec-
tion 3. Section 4 discusses the simulated and real data experiments that
show how the confidence (credible) intervals behaves compare. Section 5
concludes the study.

2 Precision and Recall Measures of an Algorithm’s Performance

In studies on a two-class classification problem of machine learning, the
performance of the learning algorithm is always assessed with empirical
measures, based on the TP, FP, true negative (TN), and FN values of a
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2 × 2 confusion matrix. In practice, a number of such measures have been
developed depending on the type of error under consideration, including
the precision value, the recall value, the F1 score, sensitivity, specificity, the
TP rate, the FP rate, the receiver operating characteristic (ROC) curve, the
area under the ROC curve (AUC), and the Matthews correlation coefficient
as shown in Table 2 (Powers, 2011; Fawcett, 2006; Flach, 2003; Goutte &
Gaussier, 2005; Lobo, Jimenez, & Real, 2008; Nadeau & Bengio, 2003; Wang
et al., 2015; Yang & Liu, 1999). In this study, we focus on two important
performance indicators in machine learning: precision and recall values.

Strictly speaking, the precision and recall values are estimations of the
theoretical precision and recall measures for a specific practical application.
Thus, we first discuss theoretical precision and recall measures.

2.1 Theoretical Precision and Recall Measures. Without loss of gener-
ality, in this study, we consider only the following two-class classification
problems: each class is associated with a binary label l = {+, −}, which
accounts for the correctness of the class with respect to the task considered,
and the classification algorithm produces a prediction z indicating whether
it believes the class to be correct. Then precision may be defined as the
probability that a class is positive (+) given that it is returned by the classi-
fication algorithm, while the recall is the probability that a positive class is
returned (Goutte & Gaussier, 2005; Wang et al., 2015):

p= P(l = +|z = +), (2.1)

r = P(z = +|l = +). (2.2)

2.2 Precision and Recall Values Based on a Confusion Matrix. For a
specific two-class classification problem, the experimental outcome may be
conveniently summarized in a 2 × 2 confusion matrix:

(
TP FN

FP TN

)
.

From these counts, one can obtain the empirical precision and recall
values shown in Table 2:

p �
TP

TP + FP
, (2.3)

r �
TP

TP + FN
. (2.4)

It is obvious that the precision and recall values are estimations of the
theoretical precision and recall measures.
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2.3 Microaveraged Precision and Recall Values Based on a K-Fold
Cross-Validation. In practice, in order to eliminate the effect by chance
(e.g., variance due to small changes in the training set), a resampling method
is always used. K-fold cross-validation is probably the simplest and most
widely used resampling method. It uses all available examples as training
and test examples; it mimics K training and test sets by using some of the
data to fit the model and some to test it.

Formally, the data set S is split into K disjoint and equal-sized blocks, de-
noted as Tk, k = 1, 2, . . . , K. Let Sk be the training set obtained by removing
the elements in Tk from S; TP(A(Sk), Tk), FP(A(Sk), Tk), FN(A(Sk), Tk), and
TN(A(Sk), Tk) be the elements of confusion matrix returned by algorithm A
trained on the set Sk and tested on Tk (briefly denoted as TPk, FPk, FNk, and
TNk). The averaged confusion matrix based on their respective averages of
K TPks, FPks, FNks, and TNks has the following form:

⎛
⎜⎜⎜⎜⎝

1
K

K∑
k=1

TPk
1
K

K∑
k=1

FNk

1
K

K∑
k=1

FPk
1
K

K∑
k=1

TNk

⎞
⎟⎟⎟⎟⎠ .

Then, from equations 2.3 and 2.4, the microaveraged precision and recall
values based on a K-fold cross-validation can be obtained:

pMicro �
∑K

k=1 TPk∑K
k=1 TPk +∑K

k=1 FPk

, (2.5)

rMicro �
∑K

k=1 TPk∑K
k=1 TPk +∑K

k=1 FNk

. (2.6)

2.4 Macroaveraged Precision and Recall Values Based on a K-Fold
Cross-Validation. The so-called macroaveraged precision (recall) value
based on a K-fold cross-validation is the average of K precisions (recalls)
computed by a confusion matrix obtained based on each Sk and Tk for
k = 1, 2, . . . , K.

If denoting pk as the precision value computed based on the kth confu-
sion matrix (TPk, FPk, FNk, and TNk) and rk as the corresponding recall,
the macroaveraged precision and recall values based on a K-fold cross-
validation are defined as the averages of precisions and recalls on K groups:

pMacro �
1
K

K∑
k=1

pk, (2.7)
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rMacro �
1
K

K∑
k=1

rk, (2.8)

where pk = TPk
TPk+FPk

, rk = TPk
TPk+FNk

. TPk + FNk = P′ are all identical for k =
1, 2, . . . , K in rMacro. Then we have

rMacro = 1
K

K∑
k=1

TPk

TPk +FNk
=

1
K

∑K
k=1 TPk

P′ =
1
K

∑K
k=1 TPk

1
K

∑K
k=1(TPk +FNk)

= rMicro.

Remark 1. From above analysis, we can see that the macroaveraged and
microaveraged recall values are identical. However, for the macroaveraged
and microaveraged precision values, there is no similar conclusion.

3 Credible Intervals for Precision and Recall Measures

In this section, we present four credible and confidence intervals that can be
used to infer precision and recall measures. The first two are the posterior
credible intervals we propose, and the third and fourth confidence intervals
have already been discussed in the literature. The first credible interval for
precision (or recall) measure is provided by studying the posterior distri-
bution of the precision (or recall) inferred by all data sets corresponding
to K confusion matrices from a K-fold cross-validation. The second cred-
ible interval for precision (or recall) is constructed based on the average
of K beta posterior distributions, in which each beta posterior distribution
is inferred by a data set corresponding to a confusion matrix from K-fold
cross-validation. For convenience, we provide several useful lemmas.

Lemma 1. Observed T P, F P, F N, and T N counts follow a multinomial distri-
bution with parameters π = (πT P , πF P , πF N, πT N), denoted by D|π ∼ M(n;π),

P(D = (T P, F P, F N, T N))

=
n!

T P!F P!F N!T N!
(πT P )T P (πF P )F P (πF N)F N(πT N)T N,

where πT P + πF P + πF N + πT N = 1, T P + F P + F N + T N = n. If rewriting
T P, F P, F N, T N be n1, n2, n3, n4, πT P , πF P , πF N, πT N be π1, π2, π3, π4, we
have the following properties:

Property 1: Each component ni of D follows a binomial distribution
B(n;πi) for i = 1, 2, 3, 4.
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Property 2. Each component ni of D conditioned on another component nj
follows a binomial distribution B(n − nj;πi/(1 − π j) for i, j = 1, 2, 3, 4
and i �= j.

Property 3. The sum of ni and nj also follows a binomial distribution
B(n;πi + π j).

Property 4. The distribution of ni given the number of returned objects
ni + nj is a binomial with parameters ni + nj and πi/(πi + π j) for i, j =
1, 2, 3, 4 and i �= j.

The proof of lemma 1 and properties 1 to 4 can be found in Goutte and
Gaussier (2005). Furthermore, Goutte and Gaussier (2005) revealed that the
distributions of precision and recall have the following forms:

Lemma 2.

P(p|D) ∝ P(D|p)P(p) = pT P+λ−1(1 − p)F P+λ−1

that is, p|D ∼ Be(T P + λ, F P + λ)(beta distribution), where P(p) is the prior
distribution and p ∼ Be(λ, λ), D = (T P, F P, F N, T N), λ is the prior pa-
rameter. A similar development yields the posterior distribution for the recall:
r |D ∼ Be(T P + λ, F N + λ).

Lemma 3. Given two independent variables with binomial distributions X ∼
B(n;π) and Y ∼ B(m;π) with identical parameter π , the following property
holds: X + Y ∼ B(n + m;π ).

Lemma 4. Let U1, U2, . . . , UK be random variables with common mean β and the
following covariance structure

Var (Uk) = δ,∀ k, Cov(Uk, Uk ′ ) = γ,∀ k �= k ′.

Let ρ = γ /δ be the correlation between Uk and Uk ′ and Ū = 1
K

∑K
k=1 Uk the sample

mean; then Var(Ū) = δ
K (1 + (K − 1)ρ).

Lemmas 2 to 4 can be found in Goutte and Gaussier (2005) and Dietterich
(1998), respectively.

3.1 Credible Intervals Constructed Based on Beta Posterior Distribu-
tions Inferred by K Data Sets. First, we consider the posterior distribution
of precision inferred by the K data sets corresponding to K confusion matri-
ces from a K-fold cross-validation. These data sets are denoted D1, D2, and
DK, where Dk = (TPk, FPk, FNk, and TNk) and k = 1, . . . , K. By assuming
that the Dks are independent for k = 1, . . . , K, lemma 5 can be obtained:

Lemma 5. Provided that the Dks are independent for k = 1, . . . , K , the condi-
tional random variables

(∑K
k=1 T Pk

)∣∣(∑K
k=1(T Pk + F Pk)

)
and
∑K

k=1(T Pk |(T Pk
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+ F Pk)) have the same distribution, and they all follow a binomial distribution
B
(∑K

k=1(T Pk + F Pk); p = πT P
πT P +πF P

)
.

Proof. From lemma 1 and property 1, we know that TPk follows B(n;πTP)

for k = 1, 2, . . . , K. Combined with the assumption of the independence of
TPks, we have

∑K
k=1 TPk follows B(Kn;πTP) from lemma 3. For the variable

TPk + FPk, it is obvious that its distribution is B(n;πTP + πFP) from proper-
ties 1, 2, and 3. Then we have

∑K
k=1(TPk + FPk) follows B(Kn; (πTP + πFP)).

Thus, property 4 postulates that

(
K∑

k=1

TPk

) ∣∣∣∣∣
(

K∑
k=1

(TPk + FPk)

)
∼B

(
K∑

k=1

(TPk + FPk); p = πTP

πTP + πFP

)
.

(3.1)

Similarly, from property 4, we know that

TPk|(TPk + FPk) ∼ B
(

TPk + FPk; p = πTP

πTP + πFP

)

for k = 1, . . . , K. Then, combining the independence assumption of Dks, we
have

K∑
k=1

(TPk|(TPk + FPk)) ∼ B

(
K∑

k=1

(TPk + FPk); p = πTP

πTP + πFP

)
. (3.2)

A similar conclusion can be obtained for recall. From equations 3.1 and
3.2 that we can see that

(∑K
k=1 TPk

)∣∣(∑K
k=1(TPk + FPk)

)
and
∑K

k=1(TPk|(TPk

+ FPk)) follow a binomial distribution B
(∑K

k=1(TPk + FPk); p = πTP
πTP+πFP

)
.

Lemma 2 tells us that if we assume that p has a prior distribution of
Be(λ, λ), we can infer the posterior distribution of p based on equations 3.1
and 3.2.

Proposition 1. Provided that the Dks are independent for k = 1, . . . , K , the pos-
terior distribution of precision is a beta distribution with parameters

∑K
k=1 T Pk

+ λ and
∑K

k=1 F Pk + λ, that is, p|(D1, D2, . . . , DK ) ∼ Be
(∑K

k=1 T Pk + λ,∑K
k=1 F Pk + λ

)
. A similar development yields the posterior distribution for the

recall: r |(D1, D2, . . . , DK ) ∼ Be
(∑K

k=1 T Pk + λ,
∑K

k=1 F Nk + λ
)
.
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Proof. Similar to lemma 2, based on equations 3.1 and 3.2, we can write the
likelihood of p as

L(p) = P((D1, D2, . . . , DK)|p) ∝ p
∑K

k=1 TPk (1 − p)
∑K

k=1 FPk

Inference on p can then be performed using Bayes′ rule:

P(p|(D1, D2, . . . , DK)) ∝ P((D1, D2, . . . , DK)|p)P(p)

∝ p
∑K

k=1 TPk+λ−1(1 − p)
∑K

k=1 FPk+λ−1.

That is, p|(D1, D2, . . . , DK) ∼ Be
(∑K

k=1 TPk + λ,
∑K

k=1 FPk + λ
)
. If replacing

FP by FN, a similar conclusion can be obtained for recall.

Remark 2. Obtaining proposition 1 requires that Dks be independent. How-
ever, the training sets from any two independent partitions in a K-fold cross-
validation contain common samples regardless of how the data set is split. In
other words, the training sets are related. Furthermore, Bengio and Grand-
valet (2004) pointed out that the correlations of training sets in a K-fold cross-
validation should not be negligible. Thus, the TPs, FPs, and FNs are actually
not independent. This results in parameters of Be

(∑K
k=1 TPk + λ,

∑K
k=1 FPk +

λ
)

and Be
(∑K

k=1 TPk + λ,
∑K

k=1 FNk + λ
)

that are greater than the true pa-
rameters of them; that is, the true parameters are actually smaller than∑K

k=1 TPk + λ,
∑K

k=1 FPk + λ,
∑K

k=1 FNk + λ. For this, the precision and recall
should follow the distributions of Be

(
ω · (∑K

k=1 TPk

)+ λ, ω · (∑K
k=1 FPk

)+
λ
)

and Be
(
ω · (∑K

k=1 TPk

)+ λ, ω · (∑K
k=1 FNk

)+ λ
)

with 1/K ≤ ω ≤ 1. Here,
the problem is that ω is unknown and needs to be estimated appropriately.
When the correlations of the TPs, FPs, and FNs are large, the ω tends to be
small. By contrast, when the correlations of these variables are small, the ω

becomes large. Intuitively, using the average ω in the interval (1/K, 1) as the
value of ω is a natural selection, denoted as ω0 = (K + 1)/2K. Indeed, the
average ω may not be the best choice; however, it provides a solution that is
close to the best ω with a closed form and greatly saves computational cost.
(See the discussion based on the simulated experiments in the next section.)

Thus, the resulting credible intervals, defined as CIpM and CIrM , for pre-
cision and recall measures based on the percentiles of the beta distribution
are

CIpM =
⎡
⎣Be

(
K + 1

2K

(
K∑

k=1

TPk

)
+ λ,

K + 1
2K

(
K∑

k=1

FPk

)
+ λ

)
α/2

,

Be

(
K + 1

2K

(
K∑

k=1

TPk

)
+ λ,

K + 1
2K

(
K∑

k=1

FPk

)
+ λ

)
1−α/2

⎤
⎦ , (3.3)
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CIrM =
⎡
⎣Be

(
K + 1

2K

(
K∑

k=1

TPk

)
+ λ,

K + 1
2K

(
K∑

k=1

FNk

)
+ λ

)
α/2

,

Be

(
K + 1

2K

(
K∑

k=1

TPk

)
+ λ,

K + 1
2K

(
K∑

k=1

FNk

)
+ λ

)
1−α/2

⎤
⎦ , (3.4)

where Be(·)α denotes the α percentiles of beta distribution.

3.2 Credible Intervals Based on the Average of the K Beta Posterior
Distributions. From lemma 2, we know that for a data set Dk correspond-
ing to a confusion matrix from K-fold cross-validation, we have p|Dk ∼
Be(TPk + λ, FPk + λ) for Dk = (TPk, FPk, FNk, and TNk) and k = 1, . . . , K.
However, the posterior distribution of p depends exclusively on a frac-
tional sample set Dk. To use all of the samples to infer the precision and
recall, we might consider implementing the average of all p|Dk. We might
also seek to determine whether pA �

∑K
k=1(p|Dk)/K similarly follows a beta

distribution.
If assuming that the Dks are independent of each other, the distribution

of pA =∑K
k=1 φk =∑K

k=1(
1
K (p|Dk)) can be expressed as

FpA (t)=
∫ +∞

−∞
· · ·
∫ +∞

−∞
fφ1

(t1) · · · fφk−1
(tk−1) fφk+1

(tk+1) · · · fφK
(tK)Fφk

(t −t1

− · · · − tk−1 − tk+1 − · · · − tK)dt1 · · · dtk−1dtk+1 · · · dtK, (3.5)

where

fφk
(tk) = K fBe(TPk+λ,FPk+λ)(Ktk)

and

Fφk
(tk) =

∫ Ktk

−∞
fBe(TPk+λ,FNk+λ)(t)dt

are the probability density and distribution functions of random variable
φk for k = 1, . . . , K, respectively. fBe(a,b)(t) denotes the density function of
the beta distribution with parameters of a and b.

From equation 3.5, we can see that despite the independence of the Dks,
the distribution of pA is nevertheless complex and cannot be used directly
to construct a credible interval. A straightforward method, however, is to
approximate this distribution with a beta distribution, given that pA is an
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average of the K random variables following a beta distribution. Intuitively,
its distribution should be close to a beta distribution:

Proposition 2. Recalling that pA �
∑K

k=1(p|Dk)/K and r A �
∑K

k=1(r |Dk)/K ,
where p|Dk and r |Dk follow Be(T Pk + λ, F Pk + λ) and Be(T Pk + λ, F Nk + λ),
respectively, for Dk = (T Pk, FPk, F Nk, and T Nk) and k = 1, . . . , K , the distri-
butions of pA and rA can be approximated with Be(a A

p , b A
p ) and Be(a A

r , b A
r ), that

is,

pA P≈ Be(a A
p , b A

p ), r A P≈ Be(a A
r , b A

r ), (3.6)

where

a A
p =

E p

Vp
(E p − E2

p − Vp), b A
p =

1 − E p

Vp
(E p − E2

p − Vp),

a A
r =

Er

Vr
(Er − E2

r − Vr ), b A
r =

1 − Er

Vr
(Er − E2

r − Vr ),

E p =
1
K

K∑
k=1

T Pk + λ

T Pk + F Pk + 2λ
, Er =

1
K

K∑
k=1

T Pk + λ

T Pk + F Nk + 2λ
,

Vp =
(

1 +
K − 1

K

)
1

K 2

K∑
k=1

(T Pk + λ)(F Pk + λ)
(T Pk + F Pk + 2λ)2(T Pk + F Pk + 2λ + 1)

,

Vr =
(

1 +
K − 1

K

)
1

K 2

K∑
k=1

(T Pk + λ)(F Nk + λ)
(T Pk + F Nk + 2λ)2(T Pk + F Nk + 2λ + 1)

.

Proof. Here, pA �
∑K

k=1(p|Dk)/K, and p|Dk ∼ Be(TPk + λ, FPk + λ) for Dk =
(TPk, FPk, FNk, TNk) and k = 1, . . . , K. By equating the first and second
moments of pA and the random variable following beta distribution, we
have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E(pA) =
aA

p

aA
p + bA

p
,

Var(pA) =
aA

p bA
p

(aA
p + bA

p )2(aA
p + bA

p + 1)
.

On the other hand, we have

E(pA) = 1
K

K∑
k=1

TPk + λ

TPk + FPk + 2λ
� Ep.
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However, the variance of pA cannot simply be expressed as the average of
the variances of the p|Dks. This is because the correlations between TPks and
FPks from a K-fold cross-validation cannot be negligible, as already noted.
Thus, from lemma 4, the variance of pA is written as

Var(pA) = δ

K
(1 + (K − 1)ρ) � Vp, (3.7)

where δ = 1
K

∑K
k=1 Var(p|Dk), ρ denotes the correlation of ps from different

Dks:

Var(p|Dk) = (TPk + λ)(FPk + λ)

(TPk + FPk + 2λ)2(TPk + FPk + 2λ + 1)
.

According to the recommendation in Nadeau and Bengio (2003), the ratio
of the test sample size to the total sample size should be adopted when
estimating ρ, that is, ρ̂ = 1/K.

From this, one can show that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aA
p =

Ep

Vp
(Ep − E2

p − Vp)

bA
p =

1 − Ep

Vp
(Ep − E2

p − Vp)

.

Similarly, we can develop the approximated distribution B(aA
r , bA

r ) of rA,
where

aA
r = Er

Vr
(Er − E2

r − Vr), bA
r = 1 − Er

Vr
(Er − E2

r − Vr),

Er = E(rA) = 1
K

K∑
k=1

TPk + λ

TPk + FNk + 2λ

and

Vr = Var(rA)

=
(

1 + K − 1
K

)
1

K2

K∑
k=1

(TPk + λ)(FNk + λ)

(TPk + FNk + 2λ)2(TPk + FNk + 2λ + 1)
.
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Based on the obtained aA
p , bA

p , aA
r , and bA

r , we have

pA P≈ Be(aA
p , bA

p ), rA P≈ Be(aA
r , bA

r ).

Thus, the credible intervals based on the above beta distribution, defined
as CIpA and CIrA for precision and recall measures, respectively, have the
following forms:

CIpA = [Be
(
aA

p , bA
p

)
α/2

, Be
(
aA

p , bA
p

)
1−α/2

]
, (3.8)

CIrA = [Be
(
aA

r , bA
r

)
α/2, Be

(
aA

r , bA
r

)
1−α/2

]
. (3.9)

Remark 3. To further validate the approximate extent of the beta distri-
bution to the true distribution of pA, the density functions of Be(aA

p (ρ =
0), bA

p (ρ = 0)), Be(aA
p , bA

p ) and the true density function of pA are compared
by the following simulated experiment, where aA

p (ρ = 0) and bA
p (ρ = 0) refer

to aA
p and bA

p obtained when ρ = 0 from equation 3.7 (i.e., with independent
Dks). A similar comparison is also conducted for rA.

3.2.1 Simulated Experiment 1. Density Functions of the True and Approximate
Distributions for pA and rA. Considering a classification problem with two
classes, we have Z = (X,Y), with Prob(Y = 1) = Prob(Y = 0) = 1

2 , X|Y =
0 ∼ N(μ0, �0), X|Y = 1 ∼ N(μ1, �1). Here, we take μ0 = 05, �0 = I5, μ1 =
β115 and �1 = β2�0, where 05 and 15 denote the five-dimensional vector
with the elements of all 0 and 1; I5 denotes the five-order identity matrix,
(β1, β2) = (0.2, 1). The sample size is 200.

First, we can obtain the observed TPk, FPk, FNk, and TNk for k = 1, . . . , K
with classification tree and support vector machine classifiers. The param-
eters aA

p (ρ = 0), bA
p (ρ = 0), aA

r (ρ = 0), bA
r (ρ = 0), aA

p , bA
p , aA

r , and bA
r are then

computed. Thus, the approximate density functions of pA and rA can be
obtained based on the distributions Be(aA

p (ρ = 0), bA
p (ρ = 0)), Be(aA

r (ρ =
0), bA

r (ρ = 0)), Be(aA
p , bA

p ), and Be(aA
r , bA

r ). Their true density function is com-
puted by kernel density estimation with gaussian kernel.

In this experiment, we provide results from the most commonly used
case (i.e., K = 10). However, under other conditions, such as K = 2 or K = 5,
similar conclusions can be obtained. Next, we compare the difference of fpA

( frA ), fBe(aA
p (ρ=0),bA

p (ρ=0)) ( fBe(aA
r (ρ=0),bA

r (ρ=0))) and fBe(aA
p ,bA

p ) ( fBe(aA
r ,bA

r )), where f

refers to the density function.
From Figures 2 and 3, we can see that each of the three density curves

has a similar shape for pA and rA regardless of whether a classifica-
tion tree classifier or a support vector machine classifier is used. How-
ever, the density curves of Be(aA

p , bA
p ) and Be(aA

r , bA
r ) closely approximate
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Figure 2: Density curves of true and approximate distributions for pA and rA

with classification tree classifier.

Figure 3: Density curves of true and approximate distributions for pA and rA

with support vector machine classifier.

the true densities of pA and rA. Here, both Be(aA
p (ρ = 0), bA

p (ρ = 0)) and
Be(aA

r (ρ = 0), bA
r (ρ = 0)) are based on the independence assumption and

express a considerable bias at their peak points with respect to the true
distributions of pA and rA. This again suggests the need to correct the pa-
rameters of Be(aA

p (ρ = 0), bA
p (ρ = 0)), and Be(aA

r (ρ = 0), bA
r (ρ = 0)). By not

correcting these parameters, a liberal credible interval will doubtless obtain.
This observation further indicates that the approximate beta distribution is
relatively simple and easily adopted when constructing credible intervals
compared to the complicated true distributions of pA and rA.

3.3 Symmetrical Confidence Intervals Based on the K-Fold Cross-
Validated t Distribution. Symmetrical confidence intervals (statistical test
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of significance) based on the normal or t distribution are widely used in
the literature (Bisani & Ney, 2004; Keller, Bengio, & Wong, 2006; Nadeau
& Bengio, 2003; Yang & Liu, 1999). The symmetrical confidence intervals
based on the K-fold cross-validated t distribution at confidence level 1 − α

will look like

[
μ̂ − c

√
σ̂ 2, μ̂ + c

√
σ̂ 2
]
,

where μ̂ is a mean estimator based on the average of the K-fold cross-
validated estimators, σ̂ 2 is a variance estimator, and c is a percentile from
Student′s t distribution with a degree of freedom of K − 1. Then the confi-
dence intervals of precision and recall are written as

CIpt =
[

pMacro − c
√

σ̂ 2
pMacro, pMacro + c

√
σ̂ 2

pMacro

]
, (3.10)

CIrt =
[
rMacro − c

√
σ̂ 2

rMacro, rMacro + c
√

σ̂ 2
rMacro

]
, (3.11)

where σ̂ 2
pMacro = 1

K(K−1)

∑K
k=1(pk − pMacro)2, σ̂ 2

rMacro = 1
K(K−1)

∑K
k=1(rk − rMacro)2.

3.4 Symmetrical Confidence Intervals Based on the Corrected K-Fold
Cross-Validated t Distribution. Bengio and Grandvalet (2004) showed that
the correlation of test blocks cannot be ignored in computing the variance
of K-fold cross-validation; otherwise, the variance will be grossly under-
estimated. Based on this, Grandvalet and Bengio (2006) obtained a cor-
rected K-fold cross-validated t-test by correcting the variance of K-fold
cross-validation. If we let μ̂ be pMacro (or rMacro), σ̂ 2 be σ̂ 2

pMacro/(1 − ρpMacro )

(or σ̂ 2
rMacro/(1 − ρrMacro )), we can obtain the symmetrical confidence interval

based on the corrected K-fold cross-validated t distribution:

CIpCt =

⎡
⎢⎣pMacro − c

√√√√ σ̂ 2
pMacro

(1 − ρpMacro )
, pMacro + c

√√√√ σ̂ 2
pMacro

(1 − ρpMacro )

⎤
⎥⎦ , (3.12)

CIrCt =
⎡
⎣rMacro − c

√
σ̂ 2

rMacro

(1 − ρrMacro )
, rMacro + c

√
σ̂ 2

rMacro

(1 − ρrMacro )

⎤
⎦ , (3.13)

where ρpMacro (ρrMacro) is the ratio of the covariance of pks (rks) for k = 1, . . . , K
and the variance of pMacro (rMacro). Grandvalet and Bengio (2006) suggested
an empirical estimation of ρ̂pMacro = 0.7 by conducting a large number of
experiments.
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Table 3: Single-Point Estimation of Precision and Recall in the Case of μ0 =
05, �0 = I5, μ1 = β115, and �1 = β2�0 with Different Combination of (β1, β2).

(β1, β2) pMac pMic rMic = rMac

(1,2) 0.768 0.759 0.758
(1,0.1) 0.919 0.915 0.929
(0.2,3) 0.689 0.683 0.682

4 Simulated Experiments for Comparison

In this section, we first demonstrate with a simulation that false conclusions
proceed from the use of single-point micro- and macroaveraged precision
and recall estimations to estimate precision and recall measures. It may
be more suitable based on confidence (credible) interval to infer them.
We then investigate the degree of confidence and the interval length of
the four credible and confidence intervals based on K-fold cross-validation
presented in this study for multiple classifiers on simulated and real letter
recognition and MAGIC gamma telescope data sets. For a given problem,
we generated 1000 independent data sets to fully take into account the effect
of the randomness of the training set, as well as that of the test examples.

For comparison, we took K = 10 (most commonly used in the literature)
in K-fold cross-validation. We chose λ = 1, the uniform prior, in the beta
distribution. The sample sizes were n = 200 and 1000 for simulated and real
data sets. The confidence level 1 − α = 0.95, that is, α = 0.05.

4.1 Single-Point Estimations of Precision and Recall Based on Micro-
and Macroaverages. The simulated data Z = (X,Y) were generated in
a manner similar to simulated experiment 1, but we took (β1, β2) =
(1, 2), (1, 0.1), (0.2, 3). The classifier was classification tree. The sample size
was 200.

From Table 3, it is clear that the single-point pMacro value is higher than
pMicro and that the values of rMacro and rMicro are equivalent. It is always said
that the macroaverage is superior to the microaverage in the literature be-
cause higher precision and recall values are blindly desirable by the authors.
However, as Goutte and Gaussier (2005) and Wang et al. (2015) noted, the
point estimation does not consider the variance of the estimation, and thus
it is prone to false conclusions. For example, in the case of (β1, β2) = (1, 2),
the confidence interval for precision based on the K-fold cross-validated
t distribution inferred from pMacro was (0.689, 0.846), which obviously in-
cludes the values of pMicro = 0.759. This implies that even with a liberal
confidence interval, it was difficult to make a distinction between pMacro and
pMicro. In other words, the difference between pMacro and pMicro was not sta-
tistically significant, and this difference may result from random error. The
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Table 4: Degrees of Confidence and Interval Lengths of Credible and Confi-
dence Intervals for Precision and Recall Based on Perceptron Classifier.

Case: n = 200, d = 5, Case: n = 1000, d = 100, Case: n = 200, d = 300,
μ1 = 0.215, �1 = I5 μ1 = 0.21100, �1 = I100 μ1 = 0.21300, �1 = I300

CIpM DOC 99.9% 99.4% 98.3%
IL 0.256 0.099 0.184

CIpA DOC 99.8% 98.7% 63.7%
IL 0.237 0.099 0.196

CIpt DOC 91.7% 93.1% 89.9%
IL 0.172 0.074 0.144

CIpCt DOC 99.5% 99.4% 98.2%
IL 0.314 0.135 0.263

CIrM DOC 97.4% 98.7% 98.7%
IL 0.254 0.101 0.234

CIrA DOC 97.7% 97.2% 94.3%
IL 0.225 0.101 0.213

CIrt DOC 93.4% 95.3% 95.3%
IL 0.247 0.094 0.216

CIrCt DOC 99.4% 99.7% 99.8%
IL 0.452 0.172 0.395

fact that the conditional random variables
∑K

k=1 TPk

∣∣∑K
k=1(TPk + FPk) and∑K

k=1(TPk|(TPk + FPk))
(∑K

k=1 TPk

∣∣∑K
k=1(TPk + FNk) and

∑K
k=1(TPk|(TPk +

FNk))
)

have the same distribution also validated this point from a different
perspective. Thus, it may be more suitable based on confidence (credible) in-
terval to implement the inference for precision and recall. We next compare
the degree of confidence and the interval length of four credible and confi-
dence intervals of precision and recall for multiple classifiers on simulated
and real data sets.

4.2 Comparison of Credible and Confidence Intervals on Simulated
Data. The experimental setup in this section was similar to that of section
4.1, in which multiple combinations of μ0, �0, μ1, and �1 were considered.
The classifiers were a perceptron with one hidden layer, a classification tree,
and a support vector machine with gaussian kernel.

Tables 4, 5, and 6 show the simulated results of the degree of confi-
dence and interval length of four credible and confidence intervals based
on K-fold cross-validation for precision and recall. First, we see that the
confidence intervals based on a K-fold cross-validated t distribution exhib-
ited a lower degree of confidence (below 95%) in almost all cases (in 28 of
the 30 cases). For example, in six cases in Table 5, the degrees of confidence
for this confidence interval of precision were 90.1%, 92.1%, 90.6%, 88.9%,
92.0%, and 87.9% for the classification tree classifier. In contrast, the degrees
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Table 5: Degrees of Confidence and Interval Lengths of Credible and Confi-
dence Intervals for Precision and Recall Based on Classification Tree Classifier.

Case: n = 200, d = 5, Case: n = 1000, d = 100, Case: n = 200, d = 300,
μ1 = 0.215, �1 = I5 μ1 = 0.21100, �1 = I100 μ1 = 0.21300, �1 = I300

CIpM DOC 99.7% 99.6% 99.7%
IL 0.256 0.116 0.255

CIpA DOC 99.8% 99.6% 99.4%
IL 0.236 0.116 0.235

CIpt DOC 90.1% 92.1% 90.6%
IL 0.164 0.070 0.165

CIpCt DOC 99.1% 99.2% 98.8%
IL 0.299 0.127 0.302

CIrM DOC 97.6% 97.1% 97.9%
IL 0.254 0.116 0.253

CIrA DOC 98.1% 97.5% 97.5%
IL 0.226 0.115 0.226

CIrt DOC 92.4% 92.9% 91.8%
IL 0.232 0.107 0.228

CIrCt DOC 99.7% 99.5% 99.2%
IL 0.423 0.195 0.416

Case: n = 200, d = 5, Case: n = 1000, d = 100, Case: n = 200, d = 300,
μ1 = 15, �1 = 2I5 μ1 = 1200, �1 = 2I200 μ1 = 1300, �1 = 2I300

CIpM DOC 99.2% 98.7% 99.1%
IL 0.219 0.090 0.221

CIpA DOC 96.5% 99.3% 94.7%
IL 0.208 0.091 0.209

CIpt DOC 88.9% 92.0% 87.9%
IL 0.157 0.067 0.157

CIpCt DOC 99.1% 99.2% 99.3%
IL 0.287 0.122 0.286

CIrM DOC 98.6% 98.5% 97.2%
IL 0.219 0.094 0.220

CIrA DOC 93.3% 96.2% 91.9%
IL 0.204 0.094 0.205

CIrt DOC 94.5% 93.8% 91.2%
IL 0.203 0.083 0.194

CIrCt DOC 99.6% 99.6% 98.9%
IL 0.370 0.151 0.355

of confidence for credible intervals constructed based on the beta posterior
distribution inferred by the K data sets corresponding to K confusion matri-
ces from K-fold cross-validation all exceeded 95%. The confidence interval
based on the corrected K-fold cross-validated t distribution elevated the
degrees of confidence of those based on the K-fold cross-validated t distri-
bution by correcting the variance of the t statistic.
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Table 6: Degrees of Confidence and Interval Lengths of Credible and Con-
fidence Intervals for Precision and Recall Based on Support Vector Machine
Classifier.

Case: n = 200, d = 5, Case: n = 1000, d = 200, Case: n = 200, d = 300
μ1 = 0.215, �1 = I5 μ1 = 0.21200, �1 = I200 μ1 = 0.21300, �1 = I300

CIpM DOC 99.6% 99.2% 98.5%
IL 0.254 0.073 0.162

CIpA DOC 99.6% 95.2% 72.8%
IL 0.234 0.075 0.172

CIpt DOC 90.1% 93.9% 92.2%
IL 0.163 0.055 0.117

CIpCt DOC 99.1% 99.4% 99.2%
IL 0.297 0.100 0.213

CIrM DOC 97.9% 98.4% 97.4%
IL 0.253 0.073 0.162

CIrA DOC 97.4% 92.7% 71.7%
IL 0.226 0.076 0.172

CIrt DOC 91.7% 94.9% 91.3%
IL 0.222 0.062 0.136

CIrCt DOC 99.1% 99.5% 99.0%
IL 0.405 0.113 0.248

Case: n = 200, d = 5, Case: n = 1000, d = 200, Case: n = 200, d = 300,
μ1 = 15, �1 = 2I5 μ1 = 0.21200, �1 = 3I200 μ1 = 0.21300, �1 = 3I300

CIpM DOC 99.9% 100% 99.8%
IL 0.204 0.092 0.204

CIpA DOC 98.6% 99.7% 98.9%
IL 0.196 0.092 0.193

CIpt DOC 91.1% 93.5% 91.4%
IL 0.144 0.061 0.127

CIpCt DOC 99.3% 99.8% 99.1%
IL 0.262 0.111 0.230

CIrM DOC 99.4% 98.6% 98.7%
IL 0.194 0.078 0.147

CIrA DOC 93.9% 95.2% 56.7%
IL 0.190 0.080 0.165

CIrt DOC 93.6% 94.5% 90.7%
IL 0.169 0.066 0.120

CIrCt DOC 99.6% 99.7% 98.3%
IL 0.309 0.121 0.219

However, the credible interval based on the average of the K beta pos-
terior distributions from K-fold cross-validation returned somewhat am-
bivalent results. In 10 of the 30 cases, its degrees of confidence fell below
95%. One example is the situation represented by the case of μ1 = 0.21300,

�1 = I300 for a perceptron classifier in Table 4. In this case, its degree of
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confidence was only 63.7%, which is far below 95%. This can be explained
by the fact that this method merely adopts the average of the K results, and
this average is significantly affected by a poor result. That is, this method
is less robust than a credible interval constructed based on a beta poste-
rior distribution inferred by the K data sets corresponding to K confusion
matrices.

Indeed, the degree of confidence is not the only important consideration
when choosing a statistical confidence (credible) interval. Another measure
for the confidence (credible) interval is the interval length. From Tables 4,
5, and 6, we can see that the interval length of the confidence interval based
on a K-fold cross-validated t distribution was the shortest among the four
credible and confidence intervals. At the same time, however, it had the
lowest degree of confidence.

It is thus important to consider how these two factors might be com-
promised. In general, when the degree of confidence is comparative, the
confidence (credible) interval is always measured based on the interval
length. That is, for a given degree of confidence, a fundamental principle
for selecting the confidence (credible) interval is to select the one with the
shortest interval length (Mao, Wang, & Pu, 2006; Shi, 2008; Shao, 2003).
With an acceptable degree of confidence (above 95%), credible intervals of
precision based on an average of the K beta posterior distributions had a
shorter or comparable interval length compared to those based on the beta
posterior distribution inferred by K data sets. Moreover, the interval lengths
of these two credible intervals were both shorter than those based on the
corrected K-fold cross-validated t distribution. Consider, for example, the
case of μ1 = 15, �1 = 2I5 in Table 6, classified using a support vector ma-
chine classifier. In this case, the interval length for the confidence interval of
precision based on the corrected K-fold cross-validated t distribution was
0.262. However, the interval lengths for credible intervals based on the beta
posterior distribution inferred by K data sets and the average of posterior
distributions were 0.204 and 0.196, respectively.

In particular, when the sample size increased, there was little change to
the degree of confidence for the credible and confidence intervals. However,
their interval lengths decreased by approximately half.

Remark 4. In the extreme case where precision and recall were 1, the degree
of confidence was 0 with the proposed credible intervals based on a K-fold
cross-validated beta distribution with a confidence level of α = 0.05. This
was demonstrated in the case where μ1 = 15, �1 = 0.1I5, and n = 1000 for
a support vector machine classifier. Such a situation obtained because the
1 − α/2 quantile of the beta distribution does not exceed 1 when α = 0.05.
Thus, the credible intervals do not include the true value of 1.

In fact, in this special case, precision and recall are fixed, not random
variables, and thus the credible interval has degenerated into the confi-
dence interval of frequentist statistics. Furthermore, because the precision
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Table 7: Degrees of Confidence and Interval Lengths of Credible and Confi-
dence Intervals for Precision and Recall at n = 200 for Letter Recognition Data.

CIpM CIpA CIpt CIpCt CIrM CIrA CIrt CIrCt

Classification DOC 99.1% 98.0% 90.6% 98.9% 98.2% 95.4% 93.6% 99.5%
tree classifier IL 0.238 0.221 0.168 0.306 0.237 0.215 0.220 0.403

Perceptron DOC 99.2% 97.7% 94.4% 99.8% 98.3% 93.9% 95.6% 99.9%
classifier IL 0.234 0.218 0.168 0.306 0.234 0.213 0.221 0.404

Support vector DOC 99.7% 99.5% 90.6% 99.2% 95.7% 94.1% 90.5% 99.4%
machine IL 0.237 0.221 0.154 0.282 0.235 0.215 0.212 0.388
classifier

and recall values were all equal to 1 in all replicated experiments, the vari-
ance of the estimation was zero. Thus, the traditional symmetrical interval
estimation will actually degenerate into a point estimation.

4.3 Comparison of Credible and Confidence Intervals on Real Data.
Two data sets from the UCI database, letter recognition data and MAGIC
gamma telescope data, were considered in this section (Frey & Slate, 1991;
Heck, Knapp, Capdevielle, & Thouw, 1998). Letter recognition data for
identifying the letters of the roman alphabet comprise 20,000 examples
described by 16 features. The 26 letters represent 26 categories, similar to
Nadeau and Bengio (2003) and Wang et al. (2014), who turned it into a
two-class (A–M versus N–Z) classification problem. In the MAGIC gamma
telescope data, depending on the energy of the primary gamma, 10 features
are allowed to discriminate statistically those caused by primary gammas
(signal) from the images of hadronic showers initiated by cosmic rays in
the upper atmosphere (background). We sampled, with replacement, 200
(1000) examples from the 20,000 (13,376) examples available in the letter
recognition and the MAGIC gamma telescope data, respectively. Repeating
this 1000 times, we then computed the degrees of confidence and interval
lengths of the four credible and confidence intervals based on 1000 sets of
data obtained.

As with the simulated data, the credible intervals constructed based on
the beta posterior distribution inferred by the K data sets corresponding to
K confusion matrices from K-fold cross-validation for precision and recall
resulted in a considerable degree of confidence in almost all cases, as shown
in Tables 7, 8, 9, and 10. One exceptional to this obtained when n = 1000 with
the perceptron classifier. In this case, their degrees of confidence for recall
were merely 83.5% and 87.7% for the letter recognition and the MAGIC
gamma telescope data, respectively.

For a precision measure, the credible interval based on the average
of the K beta posterior distributions from K-fold cross-validation all had
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Table 8: Degrees of Confidence and Interval Lengths of Credible and Confi-
dence Intervals for Precision and Recall at n = 1000 for Letter Recognition Data.

CIpM CIpA CIpt CIpCt CIrM CIrA CIrt CIrCt

Classification DOC 97.2% 96.6% 90.9% 98.7% 98.0% 89.7% 85.9% 99.1%
tree classifier IL 0.100 0.100 0.077 0.140 0.103 0.102 0.102 0.186

Perceptron DOC 96.0% 96.3% 93.3% 99.6% 83.5% 88.3% 87.3% 97.6%
classifier IL 0.096 0.096 0.086 0.157 0.095 0.094 0.131 0.240

Support vector DOC 98.4% 99.1% 83.5% 97.7% 96.7% 97.7% 91.7% 99.1%
machine IL 0.113 0.113 0.069 0.126 0.114 0.113 0.099 0.181
classifier

Table 9: Degrees of Confidence and Interval Lengths of Credible and Confi-
dence Intervals for Precision and Recall at n = 200 for MAGIC Gamma Tele-
scope Data.

CIpM CIpA CIpt CIpCt CIrM CIrA CIrt CIrCt

Classification DOC 98.9% 98.5% 87.8% 99.2% 98.6% 91.0% 94.2% 99.7%
tree classifier IL 0.226 0.213 0.165 0.302 0.229 0.211 0.209 0.381

Perceptron DOC 99.3% 98.0% 90.9% 99.0% 95.3% 84.5% 91.1% 99.1%
classifier IL 0.245 0.229 0.182 0.332 0.244 0.217 0.254 0.463

Support vector DOC 97.3% 97.9% 81.3% 96.2% 98.1% 95.2% 92.2% 99.2%
machine IL 0.240 0.224 0.164 0.300 0.241 0.219 0.208 0.379
classifier

Table 10: Degrees of Confidence and Interval Lengths of Credible and Confi-
dence Intervals for Precision and Recall at n = 1000 for MAGIC Gamma Tele-
scope Data.

CIpM CIpA CIpt CIpCt CIrM CIrA CIrt CIrCt

Classification DOC 97.6% 97.0% 88.4% 98.6% 95.2% 95.5% 91.9% 99.2%
tree classifier IL 0.096 0.097 0.074 0.135 0.103 0.103 0.095 0.174

Perceptron DOC 98.4% 98.6% 93.5% 99.6% 87.7% 85.2% 93.3% 99.5%
classifier IL 0.105 0.106 0.083 0.152 0.105 0.103 0.139 0.253

Support vector DOC 99.6% 99.5% 90.3% 99.4% 99.3% 98.7% 93.3% 99.9%
machine IL 0.114 0.114 0.072 0.132 0.114 0.113 0.101 0.185
classifier

acceptable degrees of confidence with the two sample sizes in two real data
sets. For recall, however, in 7 of 12 cases, the degree of confidence fell below
95%. Similarly, the confidence interval based on the K-fold cross-validated
t distribution exhibited a degraded degree of confidence.
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With an acceptable degree of confidence (above 95%), the credible in-
terval based on the average of the K beta posterior distributions had the
shortest interval length compared with the other confidence and credible
intervals. In particular, when n = 1000, with an acceptable degree of confi-
dence, the intervals were of comparable length to credible intervals based
on the beta posterior distribution inferred by the K data sets and based
on the average of the K beta posterior distributions whether for the letter
recognition data or for the MAGIC gamma telescope data. Specifically, the
intervals based on the beta distribution were 71.4%, 61.1%, 89.6%, 71.1%,
69.1%, and 86.4% of the interval length of confidence intervals based on
the corrected K-fold cross-validated t distribution for the classification tree,
perceptron, and support vector machine classifiers in the letter recognition
and the MAGIC gamma telescope data, respectively.

The results in Tables 7 to 10 from two real data sets showed that the
interval length also decreased by half as the sample size changed from 200
to 1000. This implies that the sample size had a significant impact on the
interval length of the confidence (credible) interval.

4.4 Average Ranks of Four Credible and Confidence Intervals. To
further investigate this problem, we compared the average ranks of four
credible and confidence intervals with regard to their degree of confidence
and interval length in all 27 cases of simulated and real data sets. Table 11
showed the results based on the simulated data sets with 15 cases and real
data sets with 12 cases.

The average rank of the confidence interval based on the K-fold cross-
validated t distribution was ranked first for interval length, but it ranked last
among all four methods for the degree of confidence. By contrast, the con-
fidence interval based on the corrected K-fold cross-validated t distribution
ranked first for degree of confidence, but it ranked last for interval length.
The two credible intervals proposed in this letter lay between the confidence
intervals based on the K-fold and the corrected K-fold cross-validated t dis-
tributions. With an acceptable degree of confidence, the average ranks of
our methods were first and second, and they were superior to the confi-
dence interval based on the corrected K-fold cross-validated t distribution.
The reason for this occurrence was the fact that the degrees of confidence
of the confidence interval based on the K-fold cross-validated t distribution
were all less than 95%.

4.5 Choice of ω. In the construction of the credible interval based on
the beta posterior distribution inferred by the K data sets corresponding to
K confusion matrices from K-fold cross-validation for precision and recall,
the choice of ω is very important. Poor ω may affect the degree of confi-
dence and interval length of the credible interval. Thus, in this section, we
experimentally studied the changes in the degree of confidence and inter-
val length as the changes of the values of the ω. Experimental results are in
Table 12.
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Table 11: Average Ranks of Four Credible and Confidence Intervals.

Rank

CIpM CIpA CIpt CIpCt

Case DOC

1 1 2 4 3
2 1 3 4 1
3 1 4 3 2
4 2 1 4 3
5 1 1 4 3
6 1 2 4 3
7 1 3 4 2
8 3 1 4 2
9 2 3 4 1
10 1 1 4 3
11 2 3 4 1
12 2 4 3 1
13 1 3 4 2
14 1 3 4 2
15 1 3 4 2
16 1 3 4 2
17 2 3 4 1
18 1 2 4 3
19 2 3 4 1
20 3 2 4 1
21 2 1 4 3
22 2 3 4 1
23 1 3 4 2
24 2 1 4 3
25 2 3 4 1
26 3 2 4 1
27 1 2 4 3

Average rank 1.6(1) 2.4(3) 3.9(4) 2(2)

IL

Average rank 2.5(3) 2.2(2) 1(1) 4(4)

CIrM CIrA CIrt CIrCt

DOC

Average rank 2.3(2) 3.1(3) 3.6(4) 1.0(1)

IL

Average rank 2.6(3) 1.8(2) 1.4(1) 4(4)
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Table 12 shows that when ω increased, the degree of confidence and the
interval length of the credible interval gradually decreased. In general cases,
we opt to select an ω such that the credible interval has an accepted degree
of confidence (larger than 95%) and a short interval length. However, the
best ω cannot express a closed form because the correlations of the TPs,
FPs, and FNs vary in different cases with different classifiers and data sets.
For example, the best ω was (K + 1)/2K = 0.55 for K = 10 in the case of
letter recognition data, n = 200, support vector machine classifier. However,
the best ωs were 0.65 and 0.75 in the cases of letter recognition data, n =
200, classification tree classifier, and MAGIC gamma telescope data, n =
200, classification tree classifier, respectively. To determine the best ω, the
entire interval from 1/K to 1 should be searched, an expensive computation.
Considering this condition, we suggested the computation of ω through
(K + 1)/2K. Although this selection method may not select the best ω, it
provides a solution that is close to the best ω with a closed form and greatly
saves on computational costs.

5 Conclusion

Considering that the commonly used confidence interval based on a K-fold
cross-validated t distribution suffers from a lower degree of confidence, we
presented a novel way to construct credible intervals indirectly, based on the
posterior distributions of precisions and recall. Two credible intervals based
on a K-fold cross-validated beta posterior distribution were thus proposed.

Furthermore, we compared our proposed credible intervals with exist-
ing confidence intervals for precision and recall through simulated and real
data experiments. With an acceptable degree of confidence, our methods
outperformed these existing methods. Specifically, they exhibited shorter
interval lengths in all cases. The first proposed credible interval is particu-
larly recommended, given that it displayed high degrees of confidence and
short interval lengths in almost all experiments.

One of the key uses of performance metrics is model (algorithm) selec-
tion, which is traditionally straightforward to do based on point estimations,
but how would this be done based on the performance intervals proposed?
When the credible interval is used to select the models A and B, if their cred-
ible intervals are uncrossed, the model with high precision (recall) should
be selected. However, if the credible interval of precision of A completely
contains that of B, we cannot directly provide a definitive conclusion and
need further analysis. For example, we can select models by directly com-
paring their right or left intervals. However, is this appropriate? The use
of the proposed credible interval in comparing models is currently being
investigated.

In practical applications, we always need to take into consideration the
two factors of precision and recall. This enables the construction of a utility
function that directly captures the value of true positives and negatives
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versus the cost of false positives and negatives. The ROC curve is a useful
tool that facilitates choosing an optimal classification threshold for a given
application. For quantitatively evaluating the model performance, an AUC
measure obtained based on the ROC curve is often used. However, the
AUC measure remains a point estimation. How the credible interval of
this measure can be constructed by analyzing the distribution of AUC is
meaningful research work and our future research direction.
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