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Abstract 5 × 2 cross-validated F-test based on independent five replications of 2-fold
cross-validation is recommended in choosing between two classification learning algorithms.
However, the reusing of the same data in a 5 × 2 cross-validation causes the real degree
of freedom (DOF) of the test to be lower than the F(10, 5) distribution given by (Neural
Comput 11:1885–1892, [1]). This easily leads the test to suffer from high type I and type
II errors. Random partitions for 5 × 2 cross-validation result in difficulty in analyzing the
DOF for the test. In particular, Wang et al. (Neural Comput 26(1):208–235, [2]) proposed a
new blocked 3 × 2 cross-validation, that considered the correlation between any two 2-fold
cross-validations. Based on this, a calibrated balanced 5×2 cross-validated F-test following
F(7, 5) distribution is put forward in this study by calibrating the DOF for the F(10, 5)
distribution. Simulated and real data studies demonstrate that the calibrated balanced 5 × 2
cross-validated F-test has lower type I and type II errors than the 5×2 cross-validated F-test
following F(10, 5) in most cases.

Keywords Test · Type I error · Type II error · Cross-validation · Classification learning
algorithm

1 Introduction

Inmachine learning research,whenproposing anewclassification learning algorithm,weusu-
ally need to compare its performance with the previous best algorithms. However, choosing
between two learning algorithmswith a data set is not a simple task. Themost straightforward
approach is to use statistical tests of significance to determine whether a new algorithm per-
forms better than previous ones. Given two classification algorithms and n samples, we first
train the two algorithms on the same train data set and then validate whether the difference
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between the two algorithms is significant or not on the same test set. If we assume that the
two algorithms have no difference, we can construct a test statistic under this assumption and
check the probability of rejecting this hypothesis based on the distribution of the test statistic.
If this probability is sufficiently high, we accept the hypothesis, otherwise we reject it. The
rejected probability α is called the probability of type I error when no difference exists, and
the accepted probability β is called the probability of type II error when a difference exists.

Cross-validation through training and testing data a number of times is always conducted
to estimate the performance of an algorithm and therefore reduce the effect of random error.
Numerous tests based on cross-validation used in choosing algorithms have been proposed,
such as K-fold cross-validated t-test [3–6], 5 × 2 cross-validated t-test and F-test [1,7,8],
blocked 3 × 2 cross-validated t-test [2]. Other related literatures refer to [9–14] and [15].

Dietterich [7] proposed a 5 × 2 cross-validated t-test based on five group replications of
2-fold cross-validation and demonstrated that its performance is better than 10-fold cross
validation by simulated experiments. The numerator of the 5 × 2 cross-validated t-test sta-
tistic is arbitrary, actually there are ten different values that can be placed in the numerator.
In addition, changing the numerator corresponds to changing the order of replications or
folds and should not affect the test result. However, [1] proved the opposite. Alpaydin then
constructed a variant of 5× 2 cross-validated t-test, combined 5× 2 cross-validated F-test,
and demonstrated that the variant was more powerful than the 5 × 2 cross-validated t-test.
The 5 × 2 cross-validated test statistic following F(10, 5) distribution is drawn from the
independence assumption of replications and folds. However, training (test) sets from any
two independent partitions contain common samples regardless of how the data is split. Thus,
cross-validation estimators with different data partitions are actually not independent. The
5×2 cross-validated F-test discussed by [1] did not consider the correlation amongfive 2-fold
cross-validations. Bouckaert [16] pointed out that reusing of the same data in cross-validation
would make the DOF of the corresponding test statistic lower than the theoretically expected
number. This easily leads the test to suffer from high type I and type II errors (see [13]). Ran-
dom partitions for 5×2 cross-validation result in difficulty in analyzing the DOF for the test.
Thus, the correlation of any two 2-fold cross-validations should be considered in studying
the distribution of 5×2 cross-validated F-test statistic such that the distribution can be closer
to the true distribution (DOF of distribution) and more accurate analysis of type I and type
II errors can be conducted. In particular, [2] proposed a new blocked 3× 2 cross-validation,
that considered the correlation between any two 2-fold cross-validations. Furthermore, [13]
studied the effect of the correlation between any two 2-fold cross-validations in a m × 2
cross-validation on the performance of algorithm.

In this paper, based on the blocked 3 × 2 cross-validation given by [2], we propose a
calibrated balanced 5×2 cross-validated F-test following F(7, 5) distribution by calibrating
the DOF for the F(10, 5) distribution. Simulated and real data studies demonstrate that the
calibrated balanced 5 × 2 cross-validated F-test has lower type I and type II errors than the
5 × 2 cross-validated F-test following F(10, 5) in most cases.

2 Calibrated Balanced 5× 2 Cross-Validated F-Test

2.1 5× 2 Cross-Validated F-Test

Dietterich [7] pointed out that the variance of K -fold cross-validated t-test could be under-
estimated because of the overlapping of training sets. The so-called K -fold cross-validation
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is that the data set is split into K disjoint and equal-sized subsets, and K − 1 subsets are
used to train and one subset is used to test. This process is replicated K times, it is obvious
that the overlapping of any two training sets are K − 2. Based on this, Dietterich proposed
a 5 × 2 cross-validated paired t-test based on five replications of 2-fold cross-validation.
In each replication, the available data is randomly partitioned into two equal-sized sets,
S(i)
1 and S(i)

2 , i = 1, . . . , 5. Each learning algorithm is trained on each set and tested

on the other set to produce cross-validated estimators μ̂
(i)
1 and μ̂

(i)
2 , i = 1, . . . , 5, where

μ̂
(i)
1 = 2

n

∑
z j∈S(i)

2
L(A(S(i)

1 ), z j ), μ̂
(i)
2 = 2

n

∑
z j∈S(i)

1
L(A(S(i)

2 ), z j ), L(, ) represents {0,

1}-loss function, n is sample size. Let S2i = (μ̂
(i)
1 − μ̂(i))2 + (μ̂

(i)
2 − μ̂(i))2 be the sam-

ple variance computed from the i-th replication, where μ̂(i) = μ̂
(i)
1 +μ̂

(i)
2

2 . He then used

μ̂ = μ̂
(1)
1 , σ̂ 2 = ∑5

i=1 S
2
i /5, and under the assumption of normality, the resulting statis-

tic t = μ̂√
σ̂ 2

= μ̂
(1)
1√∑5

i=1 S
2
i /5

approximately follows a t distribution with DOF 5.

Alpaydin[1] pointed out that the numerator of 5 × 2 cross-validated t-test statistic μ̂
(1)
1

is arbitrary; actually there are ten different values that can be placed in the numerator μ̂
(i)
k ,

i = 1, . . . , 5, k = 1, 2, leading to ten possible statistics

t (i)k = μ̂
(i)
k√∑5

i=1 S
2
i /5

(1)

Alpaydin then proposed a variant of 5 × 2 cross-validated t-test, that combines multiple
statistics to get a more robust test, denoting

F5×2CV =
∑5

i=1
∑2

k=1(μ̂
(i)
k )2/10

∑5
i=1 S

2
i /5

(2)

2.2 Balanced 5× 2 Cross-Validated F-Test

Alpaydin[1] showed that F5×2CV followed an F distributionwithDOFsof 10 and5.However,
this conclusion was obtained based on the following assumption: all μ̂(i)

k s were independent
for i = 1, . . . , 5, k = 1, 2. Although random partitions for 5 × 2 cross-validation are
independent, training (test) sets fromany two independent partitions contain commonsamples
regardless of how the data is split. It causes the real DOF of the test to be lower than the
F(10, 5) distribution given by [1]. This would affect the type I and type II errors of the test
(see [13]). Random partitions for 5 × 2 cross-validation result in difficulty in analyzing the
DOF for the test. Wang et al. [2] pointed out that the dependence between any two 2-fold
cross-validations is related to the number of overlapped samples between training sets and
reaches the minimum when the number of overlapped samples is n

4 (n is the sample size).
Then they proposed a new blocked 3×2 cross-validationwith the same number of overlapped
samples. Based on this, a new balanced 5×2 cross-validated F-test is proposed in this study,
that can easily conduct a theoretical analysis of the correlation and the DOF of the test.

Blocked 3 × 2 cross-validation is constructed as follows: the data set D is split into four
disjoint and equal-sized blocks, denoted as Pj , j = 1, 2, 3, 4, respectively. The combination
of any two Pj s results in three groups and six different combinations as displayed in Table 1. It
is obvious that there is one, and only one overlapped block in any two combinations between
different groups. Furthermore, we find that by exchanging the first half of P1 for the first
half of P2 and the first half of P3 for the first half of P4, four new blocks (Pj , j = 1, 2, 3, 4)

123



Y. Wang et al.

Table 1 Balanced 5 × 2 cross-validation

Group 1 D(1)
1 =

{
P1

︷ ︸︸ ︷(
P1
1 , P2

1

)
,

P2
︷ ︸︸ ︷(
P1
2 , P2

2

) }

T (1)
1 =

{
P3

︷ ︸︸ ︷(
P1
3 , P2

3

)
,

P4
︷ ︸︸ ︷(
P1
4 , P2

4

)}

Group 2 D(2)
1 = {(P1

1 , P2
1 ), (P1

3 , P2
3 )} T (2)

1 = {(P1
2 , P2

2 ), (P1
4 , P2

4 )}
Group 3 D(3)

1 = {(P1
1 , P2

1 ), (P1
4 , P2

4 )} T (3)
1 = {(P1

2 , P2
2 ), (P1

3 , P2
3 )}

Group 4 D(4)
1 = {(P1

2 , P2
1 ), (P1

4 , P2
3 )} T (4)

1 = {(P1
1 , P2

2 ), (P1
3 , P2

4 )}
Group 5 D(5)

1 = {(P1
2 , P2

1 ), (P1
3 , P2

4 )} T (5)
1 = {(P1

1 , P2
2 ), (P1

4 , P2
3 )}

Group 6 D(6)
1 = {(P1

2 , P2
1 ), (P1

1 , P2
2 )} T (6)

1 = {(P1
4 , P2

3 ), (P1
3 , P2

4 )}

are obtained, thus resulting in a new blocked 3 × 2 cross-validation. However, an overlap
in two blocked 3 × 2 cross-validations is observed (group 1 and group 6 are identical in
Table 1), and a 5 × 2 version of blocked 3 × 2 cross-validation is obtained. The number
of overlapped samples between the five 2-fold cross-validations are identical and equal to
its expectation n

4 , namely, the samples have better balance. We thus call it balanced 5 × 2
cross-validation. From [2], we know that this balance means that group-in covariance and
group-out covariance are respectively identical, then resulting in a theoretical analysis for
the DOF of the corresponding test.

If D(i)
k , T (i)

k , i = 1, 2, 3, 4, 5, k = 1, 2 respectively denote the training and test sets as
shown in Table 1, the balanced 5 × 2 cross-validation is defined as the average of errors in
all five groups:

μ̂B5×2 = 1

5

5∑

i=1

μ̂
(i)
B = 1

5

5∑

i=1

1

2

2∑

k=1

μ̂
(i)
Bk

, (3)

where μ̂
(i)
Bk

= 2
n

∑
z j∈T (i)

k
L(A(D(i)

k ), z j ), L(A(D), y) = I [A(D) �= y] represents {0, 1}
loss.

Note D(i)
k and T (i)

k serve as a training or test set with each other, thus D(i)
1 = T (i)

2 , D(i)
2 =

T (i)
1 , i = 1, 2, 3, 4, 5.
The resulting balanced 5×2 cross-validated F-test has a similar formwith the Alpaydin’s

5 × 2 cross-validated F-test:

FB5×2CV = μ̂2
B5×2

S̄2B
(4)

where μ̂2
B5×2 = 1

5

∑5
i=1

1
2

∑2
k=1(μ̂

(i)
Bk

)2, S̄2B = ∑5
i=1 S

2
Bi/5, S

2
Bi = ∑2

k=1(μ̂
(i)
Bk

− μ̂
(i)
B )2.

Remark 1 The assumptions that the group-in and group-out covariances are respectively
identical are reasonable for our balanced 5 × 2 cross-validation from the sample balance
(the identical number of overlapped samples in the five groups). However, it may not be
reasonable for the (random) 5 × 2 cross-validation [1,7] and [8], because the covariance of
any two 2-fold cross-validated estimators decreases (or increases) with an increase in the
number of overlapped samples (see [2]).

Remark 2 Although our method has a similar formwith the Alpaydin’s 5×2 cross-validated
F-test, the partitions are different for these two tests. A poor partition may result in a large
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variance, as well as large type I and type II errors for 5×2 cross-validated F-test as shown in
[13]. However, balanced partitions for our method guarantee that it has minimum variance.

2.3 Calibration for the DOF of the Balanced 5× 2 Cross-Validated F-Test

Next, we examine the distribution of the FB5×2CV and calibrate the DOF of the distribution.

Proposition If we assume that μ̂
(i)
Bk

/σ ∼ N (0, 1), group-in covariance Cov(μ̂
(i)
Bk

, μ̂
(i)
Bk′ ) �

σ 2ρ1, k �= k′, and group-out covariance Cov(μ̂
(i)
Bk

, μ̂
(i ′)
Bk′ ) � σ 2ρ2, i �= i ′, k = k′ or

k �= k′, i, i ′ = 1, . . . , 5, k, k′ = 1, 2, then

F = (1 − ρ1)

∑5
i=1

∑2
k=1(μ̂

(i)
Bk

)2

∑5
i=1(μ̂

(i)
B1

− μ̂
(i)
B2

)2
= 1 − ρ1

2

∑5
i=1

∑2
k=1(μ̂

(i)
Bk

)2

∑5
i=1 SB

2
i

∼ F( f, 5), (5)

where 0 ≤ ρ1 ≤ ρ2 < 0.50, SB2i is sample variance, f = 10
1+ρ2

1+8ρ2
2
.

The proof is provided in the Appendix.

Remark 3 Wang et al. [2] shows that the ρ1 is almost less than ρ2, and ρ1 and ρ2 are all greater
than 0 and less than 0.5 by simulated experiments with multiple classifiers and sample sizes.
This implies that the 0 ≤ ρ1 ≤ ρ2 < 0.50 is reasonable.

Remark 4 This proposition indicates that the test statistic F decreases with increasing group-
in correlation coefficient ρ1. However, group-in and group-out correlation coefficients ρ1 and
ρ2 affect the DOF of the distribution. Table 2 presents the results.

Table 2 shows the change in the DOF of the distribution f with the changes in ρ1 and
ρ2 (ρ1 ≤ ρ2) from 0 to 0.50, where “−” represents the condition ρ1 ≤ ρ2 unsatisfied. We
can obtain two conclusions from Table 2. First, the DOF of the distribution f reaches the
maximum of 10 when ρ1 = ρ2 = 0 and reaches the minimum when ρ1 = ρ2 = 0.50.
Second, the DOF of f decreases with increasing ρ1 and ρ2, but the decrease with the change

Table 2 Change in DOF of f with changes in ρ1 and ρ2

ρ1 ρ2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.00 10.000 9.804 9.259 8.475 7.576 6.667 5.814 5.051 4.386 3.817 3.333

0.05 – 9.780 9.238 8.457 7.561 6.656 5.806 5.044 4.381 3.813 3.331

0.10 – – 9.174 8.403 7.519 6.623 5.780 5.025 4.367 3.802 3.322

0.15 – – – 8.316 7.449 6.568 5.739 4.994 4.343 3.784 3.309

0.20 – – – – 7.353 6.494 5.682 4.950 4.310 3.759 3.289

0.25 – – – – – 6.400 5.610 4.896 4.269 3.728 3.265

0.30 – – – – – – 5.525 4.831 4.219 3.690 3.236

0.35 – – – – – – – 4.756 4.162 3.646 3.203

0.40 – – – – – – – – 4.098 3.597 3.165

0.45 – – – – – – – – – 3.543 3.123

0.50 – – – – – – – – – – 3.077
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of ρ2 is faster. For example, the DOF of f decreases from 5.814 to 5.525 with increasing ρ1
from 0.00 to 0.30 and ρ2 = 0.30. However, f changes from 7.353 to 3.289 with a change in
ρ2 from 0.20 to 0.50 and ρ1 = 0.20. The difference 4.064 is significantly more than 0.289.

The previous analysis and proposition indicated that the test statistic remains unchanged
with increasing group-out correlation coefficient. However, the DOF of f of the distribution
decreases more rapidly. They all decrease with increasing group-in correlation coefficient.
This decrease is slower than the change in the DOF of f with varying group-out correlation
coefficient. In other words, the group-in correlation coefficient significantly affects the test
statistic, whereas the group-out correlation coefficient affects the change in the DOF of the
distribution of the test statistic.

For this reason, let ρ1 = 0, 0 < ρ2 < 0.50, namely, group-in μ̂
(i)
Bk
s are independent, but

group-out correlation coefficients of μ̂
(i)
Bk
s lay between 0 and 0.50. In this case, f = 10

1+8ρ2
2
,

F = FB5×2CV = 1

2

∑5
i=1

∑2
k=1(μ̂

(i)
Bk

)2

∑5
i=1 SB

2
i

=
∑5

i=1
∑2

k=1(μ̂
(i)
Bk

)2/10
∑5

i=1 SB
2
i /5

∼ F( f, 5) (6)

Here, the problem is that ρ2 is unknown and difficult to estimate [2,6]. Given that f
changes with the ρ2, we consider using the mean of ρ2 in interval (0, 0.50) as the value of f
as follows:

f =
∫ 0.50
0

10
1+8ρ2

2
dρ2

0.50
= 20

2
√
2

∫ √
2

0

1

1 + x2
dx = 5

√
2 arctan

√
2 = 6.76 ≈ 7 (7)

Remark 5 We say that this substitute is gross, but it is at least better than ρ2 = 0. When
ρ1 = 0, ρ2 = 0, all μ̂(i)

Bk
s including group-in and group-out are independent of one another,

and therefore lead to f = 10 and

F = 1

2

∑5
i=1

∑2
k=1(μ̂

(i)
k )2

∑5
i=1 S

2
i

=
∑5

i=1
∑2

k=1(μ̂
(i)
k )2/10

∑5
i=1 S

2
i /5

∼ F(10, 5).

In this case, the statistic F has a same form with the 5 × 2 cross-validated F-test, however,
they are different for the partitions, as well as the training and test sets.

Remark 6 Choosing ρ2 = 0.5 may be a good substitute when L(A(D), y) does not depend
much on the training set D and underlying algorithm A, that is when the decision function of
the underlying algorithm does not change too much when different training sets are chosen.
For instance, the support vector machine classifier (linear kernel) may be robust relative to
perturbations in the training set (see [6,17]).

In this study, we refer to the test following the distribution F(7, 5) as calibrated balanced
5 × 2 cross-validated F-test. In the following section, type I and type II errors of the 5 × 2
cross-validated F-test and the calibrated balanced 5×2 cross-validated F-test are compared
through simulated experiments.

3 Simulated Experiments

As pointed out by [13], for the Alpaydin’s 5× 2 cross-validated F-test, a poor partition may
result in large type I and type II errors. In this section, we illustrate this and show that the
calibrated balanced 5 × 2 cross-validated F-test has lower type I and type II errors than
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the 5 × 2 cross-validated F-test with poor partition in most cases. Noting that it is hard to
construct a 5 × 2 cross-validation with identical number of overlapped samples (except the
number of overlapped samples is n

4 ), we then perform the experiments by controlling the
maximum number of overlapped samples in five replications of 2-fold cross-validation. The
detail is as follows.

First, the data set D is split into twodisjoint and equal-sized blocks, denoted as Pj , j = 1, 2
respectively. By exchanging k elements of P1 for k elements of P2, a new replication of 2-fold
cross validation is obtained. The other 3 replications are obtained by random partition. Here,
we choose the maximum number of overlapped samples be 9n

20 , i.e., k = n
20 .

3.1 Simulated Data

Considering the problem of comparing the performances of two algorithms in a classification
problem with two classes, we thus have Z = (X, Y ), with Prob(Y = 1) = Prob(Y = 0) =
1
2 , X |Y = 0 ∼ N (μ0, �0), X |Y = 1 ∼ N (μ1, �1). The classification algorithms are
(A) Regression Tree (RT)

We train a least square RT and the decision function is FA(ZS)(X) = I [NZS (X) > 0.5],
where NZS (X) is the leaf value corresponding to X of the tree obtained when training on ZS .
Thus, L A( j, i) = I [FA(ZSj )(Xi ) �= Yi ] is equal to 1 whenever this algorithm misclassifies
example i ; otherwise it is 0.
(B) Ordinary Least Squares Linear Regression (LS)

We perform the regression of Y against X and the decision function is FB(ZS)(X)

= I [β̂T
ZS

X > 0.5], where β̂ZS is the ordinary least squares regression coefficient estimates.
Thus, LB( j, i) = I [FB(ZSj )(Xi ) �= Yi ] is equal to 1 whenever this algorithm misclassifies
example i ; otherwise it is 0.

and
(C) Support Vector Machine (SVM)

We train a SVM classifier with a Gaussian kernel of FC (ZS)(X). Then we use the loss
function LC ( j, i) = I [FC (ZSj )(Xi ) �= Yi ] to examine the classification results.
(D) Random Forest (RF)

RF is a classifier containing multiple decision trees that the classification result is decided
by voting to the classification results of multiple trees. The obtained classifier is denoted as
FD(ZS)(X). The same 0 − 1 loss function is used.
(E) Adaboost (AB)

AB can be used in conjunction with some weak learning algorithms to improve their
performance. The output of these weak learning algorithms is combined into a weighted sum
that represents the final output of the boosted classifier. Here, we use the tree algorithm. Also,
we can train the boosted classifier of FE (ZS)(X) and obtain the classification results based
on 0 − 1 loss function.

Similar to [6], we takeμ0 = (0, 0),�0 = I2, but takemultipleμ1 and�1, let n = 200.We
then test whether the two algorithms are different. Table 3 shows the probabilities of rejecting
the null hypothesis of the 5×2 cross-validated F-test, the blocked 3×2 cross-validated t-test
and the calibrated balanced 5× 2 cross-validated F-test in 5000 replicated experiments with
the setups shown in Table 3. The replicated experiments are drawn by independent sampling
with replacement.

In eight simulated experiments presented in Table 3, the 5× 2 cross-validated F-test with
poor partition all exhibit high probabilities of rejecting the null hypothesis. For example, in
case (3) with the comparisons of RT and LS classifiers, the probability of rejecting the null
hypothesis of the 5×2 cross-validated F-test is 0.070, which is higher than 0.05, however, it
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Table 3 Experimental results of the cases of different means and variances in simulated data

Case (1) Case (2) Case (3) Case (4) Case (5) Case (6) Case (7) Case (8)

μ0 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

μ1 (− 3
2 ,− 3

2 ) (− 1
2 , − 1

2 ) (1, 1) (1, 1) (1, 1) (1, 1) (2, 2) (2, 2)

�0 I2 I2 I2 I2 I2 I2 I2 I2

�1
1
2 I2

1
6 I2

1
6 I2

1
3 I2

1
2 I2

7
3 I2

1
6 I2

1
2 I2

RT versus LS

F5×2CV 0.149 0.180 0.070 0.054 0.086 0.043 0.099 0.214

tB3×2CV 0.145 0.205 0.048 0.043 0.078 0.040 0.094 0.241

FB5×2CV 0.091 0.123 0.033 0.029 0.046 0.022 0.042 0.125

SVM versus RF

F5×2CV 0.073 0.433 0.135 0.060 0.058 0.097 0.038 0.074

tB3×2CV 0.069 0.507 0.131 0.067 0.034 0.108 0.027 0.047

FB5×2CV 0.062 0.410 0.112 0.046 0.029 0.081 0.012 0.053

SVM versus AB

F5×2CV 1.000 0.906 1.000 0.999 0.996 0.874 1.000 1.000

tB3×2CV 1.000 0.928 1.000 1.000 1.000 0.874 1.000 1.000

FB5×2CV 1.000 0.871 1.000 0.999 0.998 0.786 1.000 1.000

AB versus RF

F5×2CV 1.000 0.999 1.000 1.000 0.999 0.975 1.000 1.000

tB3×2CV 1.000 0.999 1.000 1.000 0.999 0.901 1.000 1.000

FB5×2CV 1.000 1.000 1.000 1.000 0.999 0.939 1.000 1.000

where F5×2CV , tB3×2CV and FB5×2CV refer to the 5 × 2 cross-validated F-test following F(10, 5), the
blocked 3 × 2 cross-validated t-test following t (5) and the calibrated balanced 5 × 2 cross-validated F-test
following F(7, 5), respectively

should be less than 0.05 from the conclusion of [6]. But our method has lower probability of
rejecting the null hypothesis than the 5× 2 cross-validated F-test. For example, in case (3),
the probability of rejecting the null hypothesis of the calibrated balanced 5×2 cross-validated
F-test is 0.033. In most cases, the performance of the blocked 3×2 cross-validated t-test lay
between the 5 × 2 cross-validated F-test and the calibrated balanced 5 × 2 cross-validated
F-test.

3.2 Real Data

In this subsection, we further carry out experiments on six data sets from the UCI repository
(iris, wine, glass, heart, balance, thyroid gland). The specifications of these data sets are listed
as follows.

• Iris data set the iris data set contains 3 classes of 50 instances each, where each class
refers to a type of iris plant. One class is linearly separable from the other 2; the latter
are NOT linearly separable from each other. The number of attributes are 4. The sample
size is 150.

• Wine data set this data set is used to the recognition of three types ofwines. It includes 178
samples with class 1 of 59, class 2 of 71 and class 3 of 48, and 13 continuous attributes.
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Table 4 Probabilities of type I and type II errors based on different numbers of hidden units of MLP on six
data sets

Data set Number of
hidden units

Probabilities of type I error Probabilities of type II error

F5×2CV tB3×2CV FB5×2CV F5×2CV tB3×2CV FB5×2CV

Iris 3 0.023 0.001 0.018 0.038 0.001 0.042

10 0.006 0.008 0.008 0.007 0.009 0.009

20 0.008 0.009 0.007 0.009 0.009 0.008

Wine 10 0.034 0.078 0.030 0.909 0.938 0.892

20 0.019 0.020 0.019 0.687 0.701 0.664

Glass 5 0.018 0.005 0.018 0.635 0.599 0.554

10 0.022 0.004 0.017 0.214 0.210 0.196

20 0.019 0.003 0.019 0.059 0.070 0.064

Heart 5 0.015 0.004 0.015 0.020 0.003 0.022

10 0.015 0.002 0.018 0.013 0.007 0.013

20 0.015 0.004 0.013 0.023 0.038 0.022

Balance 5 0.018 0.004 0.013 0.058 0.039 0.036

10 0.015 0.006 0.018 0.255 0.251 0.157

20 0.016 0.007 0.013 0.522 0.545 0.331

Thyroid gland 10 0.018 0.008 0.016 0.081 0.027 0.074

• Glass data set this data set contains 214 samples. 6 types of glass are identified based
on 9 attributed variables. The numbers of sample for each class are 70, 17, 76, 13, 9, and
29, respectively.

• Heart data set this data set is a database concerningheart disease diagnosis. It contains 270
samples and 13 variables. The classification results are the heart “present” or “absent”.

• Balance data set: this data set was generated tomodel psychological experimental results.
Each example is classified as having the balance scale tip to the right, tip to the left, or be
balanced. The sample size and the number of variable are 625 and 4, respectively. The
class distributions for three class are 46.08%, 46.08%, and 7.84%, respectively.

• Thyroid gland data set the thyroid gland data for identifying thyroid gland diseases
(normal, hypo or hyper) comprise 215 examples described by 5 attributes. The numbers
of samples for each class are 150, 35 and 30, respectively.

First, similar to Alpaydin’s [1] work, to compare type I error of the two tests, we use two
multilayer perceptrons (MLP with one hidden layer) with equal numbers of hidden units.
Thus, the null hypothesis is true, and any reject is a type I error. To compare type II error of
the two tests, we take two classifiers that are different: an LP (single-layer perceptron) and
an MLP. AMLP is a feedforward artificial neural network model that maps sets of input data
onto a set of appropriate outputs. An MLP consists of multiple layers of nodes in a directed
graph, with each layer fully connected to the next one. Except for the input nodes, each node
is a neuron with a nonlinear activation function. The LP is the simplest neural network. It
only contains input and output layers. Tables 4 shows the results of the type I and type II error
rates based on 5000 replicated experiments. This is achieved by considering the data set to be
the population, from which training and test samples are drawn by independent partitioning
to the data set.
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Table 5 Probabilities of rejecting the null hypothesis on real data and SVM, RF and LDA classifiers

Data sets

Iris Wine Glass Heart Balance Thyroid gland

SVM versus RF

F5×2CV 0.039 0.040 0.988 0.029 0.079 0.968

tB3×2CV 0.102 0.036 0.999 0.025 0.060 0.986

FB5×2CV 0.032 0.035 0.987 0.021 0.059 0.958

SVM versus LDA

F5×2CV 0.242 0.034 0.275 0.021 0.144 0.143

tB3×2CV 0.491 0.041 0.410 0.004 0.187 0.112

FB5×2CV 0.224 0.043 0.293 0.013 0.123 0.124

LDA versus RF

F5×2CV 0.124 0.008 0.935 0.027 0.378 0.972

tB3×2CV 0.057 0.001 0.850 0.001 0.114 0.957

FB5×2CV 0.108 0.009 0.927 0.025 0.347 0.954

In 23 of 30 cases, the calibrated balanced 5 × 2 cross-validated F-test has lower type
I and type II errors than the 5 × 2 cross-validated F-test (Table 4). One example is the
situation in which the numbers of hidden units is 5 and the data set is balance. In this case,
the probabilities of type I and type II errors of the 5× 2 cross-validated F-test are 0.018 and
0.058 respectively, whereas those of the calibrated balanced 5× 2 cross-validated F-test are
0.013 and 0.036, respectively. For the blocked 3 × 2 cross-validated t-test, it exhibits good
performance in the probabilities of type I error. It has lower type I errors than the calibrated
balanced 5 × 2 cross-validated F-test in 10 of 15 cases. However, for the probabilities of
type II error, only 4 out of 15 cases has a superior performance over our proposed F-test.

Furthermore, we also compare these three tests based on the SVM, RF, and linear dis-
criminant analysis (LDA) classifiers on six real data sets. As shown in Table 5, in 15 of 18
cases, our method has lower probabilities of rejecting the null hypothesis than that of the
5 × 2 cross-validated F-test. In the comparisons of SVM versus RF and SVM versus LDA,
our method is superior to the blocked 3× 2 cross-validated t-test in 9 of 12 cases. However,
in the comparison of LDA versus RF, the blocked 3× 2 cross-validated t-test exhibits better
performances than the 5×2 and calibrated balanced 5×2 cross-validated F-tests in almost all
cases (5 out of 6 cases). This implies that the conservative variance estimation in the blocked
3× 2 cross-validated t-test results in good performance in some cases. This finding provides
a research direction toward further improving the performance of calibrated balanced 5 × 2
cross-validated F-test by improving its variance estimation.

4 Conclusion

Noting that 5× 2 cross-validation is the result of five replications of 2-fold cross-validation,
training (test) sets fromany two independent partitions contain common samples regardless of
how the data is split. Thus, cross-validation estimators for different data partitions are actually
not independent, that was previously neglected in 5× 2 cross-validated t and F tests. In this
study, based on the blocked 3 × 2 cross-validation considering the correlation between any
two 2-fold cross-validations given by [2], we propose a balanced 5×2 cross-validated F-test.
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Then, we analyze and discuss the distribution of this test statistic under the assumptions of
same group-in correlations and same group-out correlations. The assumptions are reasonable
for our balanced 5 × 2 cross-validation from the sample balance (the identical number of
overlapped samples in the five groups). However, it may not be reasonable for the (random)
5 × 2 cross-validation. We find that the test statistic remains unchanged with increasing
group-out correlation coefficient. However, the DOF of the distribution f decreases more
rapidly. They all decrease with increasing group-in correlation coefficient. This decrease is
slower than the change in the DOF f with varying group-out correlation coefficient. Thus,
we calibrate the DOF of the F(10, 5) distribution. We believe that following F(7, 5) is more
reasonable. Simulated and real data studies also demonstrate that the calibrated balanced
5× 2 cross-validated F-test has lower type I and type II errors than the 5× 2 cross-validated
F-test following F(10, 5) in most cases.

Nonetheless, the calibrated test statistic cannot ensure the independence between the
numerator and the denominator of the test statistic. Further study is being conducted.
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Appendix

Proof of proposition Denoting U = (μ̂
(1)
B1

, μ̂
(1)
B2

, μ̂
(2)
B1

, μ̂
(2)
B2

, . . . , μ̂
(5)
B1

, μ̂
(5)
B2

)T , we have U ∼
N (0, σ 2�) from the assumption of Proposition, where

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 ρ1 ρ2 · · · ρ2 ρ2
ρ1 1 ρ2 · · · ρ2 ρ2
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. . .
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...
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ρ2 ρ2 ρ2 · · · 1 ρ1
ρ2 ρ2 ρ2 · · · ρ1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

10×10

The eigenvalues of� are obtained easily from |λI−�| = 0: λ1 = 1−ρ1 withmultiplicity
5,λ6 = −2ρ2+ρ1+1withmultiplicity 4, andλ10 = ρ1+8ρ2+1. Thus, we can conclude that
real symmetric matrix� represents a positive definite matrix when 0 ≤ ρ1 ≤ ρ2 < 0.50. We

can also conclude that �
1
2 is a positive definite matrix from the decomposition � = �

1
2 �

1
2 .

LetU1 = U/σ, Z = �− 1
2U1, thenwe have U1 ∼ N (0, �), Z ∼ N (0, I10) and obviously

UT
1 U1 = ZT�Z .
An orthogonalmatrix exists for each n order real symmetricmatrix such that thematrix can

be diagonalized. Thus, an orthogonalmatrix T exists such that T�T T = �, i.e.,� = T T�T,

where � is a diagonal matrix, and its element is the eigenvalue of �.
We know that T Z ∼ N (0, I10) from the properties of the orthogonal matrix, then

UT
1 U1 = ZT�Z = ZT T T�T Z = ∑10

i=1 λiη
2
i . Thus, U

T
1 U1 approximately follows an

Cχ2( f ) distribution because
∑10

i=1 λiη
2
i approximately follows Cχ2( f ) distribution, where

λi denotes the eigenvalue of �, ηi is the i-th element of matrix T Z , and

C =
∑10

i=1 λ2i
∑10

i=1 λi
= 1 + ρ2

1 + 8ρ2
2 , f = (

∑10
i=1 λi )

2

∑10
i=1 λ2i

= 10

1 + ρ2
1 + 8ρ2

2

(see [18,19]).
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Note
∑10

i=1 λi = 10,
∑10

i=1 λ2i = 10(1 + ρ2
1 + 8ρ2

2 ), f C = ∑10
i=1 λi = 10.

Moreover, we have Var(μ̂(i)
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2,Cov(μ̂
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