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A cross-validation method based on m replications of two-fold cross val-
idation is called an m × 2 cross validation. An m × 2 cross validation is
used in estimating the generalization error and comparing of algorithms’
performance in machine learning. However, the variance of the estimator
of the generalization error in m × 2 cross validation is easily affected by
random partitions. Poor data partitioning may cause a large fluctuation
in the number of overlapping samples between any two training (test)
sets in m × 2 cross validation. This fluctuation results in a large variance
in the m × 2 cross-validated estimator. The influence of the random par-
titions on variance becomes serious as m increases. Thus, in this study,
the partitions with a restricted number of overlapping samples between
any two training (test) sets are defined as a block-regularized partition
set. The corresponding cross validation is called block-regularized m × 2
cross validation (m × 2 BCV). It can effectively reduce the influence of
random partitions. We prove that the variance of the m × 2 BCV esti-
mator of the generalization error is smaller than the variance of m × 2
cross-validated estimator and reaches the minimum in a special situa-
tion. An analytical expression of the variance can also be derived in this
special situation. This conclusion is validated through simulation exper-
iments. Furthermore, a practical construction method of m × 2 BCV by a
two-level orthogonal array is provided. Finally, a conservative estimator
is proposed for the variance of estimator of the generalization error.
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1 Introduction

In machine learning research, a cross-validation method is commonly used
in model selection, estimation of the generalization error, and comparison
of algorithm performances. Several versions of cross validation have been
developed: repeated learning-testing (RLT), standard K-fold cross valida-
tion, Monte Carlo cross validation, 5 × 2 cross validation and blocked 3 × 2
cross validation (Dietterich, 1998; Alpaydin, 1999; Friedman, Hastie, & Tib-
shirani, 2001; Nadeau & Bengio, 2003; Arlot & Celisse, 2010; Yildiz, 2013;
Wang, Wang, Jia, & Li, 2014). Among them, the standard two-fold cross
validation has received considerable attention because of its simplicity and
ease of use. For example, Nason (1996) employed two-fold cross valida-
tion and its variants to choose a threshold for wavelet shrinkage. Fan, Guo,
and Hao (2012) used two-fold cross validation in variance estimation in
an ultra-high-dimensional linear regression model. Stanišić and Tomović
(2012) used two-fold cross validation in a frequent item set mining task.
In practice, to improve the accuracy of estimation, data partitioning is con-
ducted a number of times (i.e., two-fold cross validation is implemented in
multiple replications). The generalization error is often estimated based on
the average of the replicated two-fold cross validations.

Cross validation based on m replications of two-fold cross validation is
called m × 2 cross validation; it is achieved by randomly splitting the data
into two equal-sized blocks m times. The m × 2 cross validation is widely
used in machine learning. Dietterich (1998) provided a t-test for use in
the comparison of algorithms based on 5 × 2 cross validation. Alpaydin
(1999) proposed a combined 5 × 2 cross-validated F-test along the line of
the 5 × 2 cross-validated t-test and demonstrated its superiority through
simulated comparisons. Yildiz (2013) adjusted the 5 × 2 cross-validated
t-test and conducted comparison experiments on multiple real-life data
sets in the UC Irvine Machine Learning Repository of databases widely
used by the machine learning community (Lichman, 2013).

However, the performance of the m × 2 cross-validation method often
relies on the quality of data partitioning and the accuracy (variance) of the
m × 2 cross-validated estimator of the generalization error. Traditionally, a
data set is randomly split into multiple different training and test data sets
of equal size; training sets (test sets) from any two independent partitions
contain common samples regardless of how the data set is split. The num-
ber of common samples is defined as the number of overlapping samples,
which are defined in section 2. Markatou, Tian, Biswas, and Hripcsak (2005)
theoretically proved that the number of overlapping samples follows a hy-
pergeometric distribution with the mathematical expectation of n/4 (where
n is the size of a data set). Example 2 and plot 2 in Wang et al. (2014) showed
that the variance of estimation of generalization error increases when the
number of overlapping samples deviate from n/4 in the classification situa-
tion with the support vector machine classifier. Example 1 further validates
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Figure 1: An example of covariance on a simulated regression data set.

the impact of the number of overlapping samples on variance in a simple
linear regression situation.

Example 1. Let Dn = (xi, yi)
n
i=1 be the data set in which the predictor vec-

tor xi = (xi,1, . . . , xi,p) is drawn from a multivariate normal distribution
Nn(0, �p×p). For the covariance matrix �p×p, all diagonal elements are equal
to 1, off-diagonal elements of the fourth column and fourth row of the ma-
trix are equal to

√
ϕ, and the other elements are equal to ϕ. The response

variable is

yi = x�
i β + εi, (1.1)

where εi ∼ N (0, 1) and β ∈ R
p with the first four coordinates (b, b, b,

−3b
√

ϕ) and 0 elsewhere. The lasso method is used as a learning algo-
rithm. The squared loss function is used as the loss function (Fan & Lv,
2008). To simulate the covariance with regard to the number of overlapping
samples, we set n = 500, p = 500, b = 5, and ϕ = 0.5. The simulation result
is depicted in Figure 1 .

Figure 1 shows that the initial decrease and subsequent increase in the
covariance of any two two-fold cross-validated estimators corresponds to an
increase in the number of overlapping samples. The covariance reaches the
minimum when the number of overlapping samples is n/4. This condition
implies that poor data partitioning may cause a large fluctuation in the
number of overlapping samples between any two training (test) sets and
thus result in a large variance of the cross-validated estimator.

Wang, Li, and Li (2015) showed that the quantiles of the maximum
numbers of the overlapping samples deviated from the n/4 increase as m
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increases; thus, their influence on the variance of estimation of the general-
ization error intensifies as m increases.

For this reason, Wang et al. (2014) proposed a new blocked 3 × 2 cross-
validation method with an equal number of overlapping samples in any
two training (test) sets of n/4 and provided an accurate theoretical expres-
sion of the variance of the blocked 3 × 2 cross-validated estimator of the
generalization error. However, they did not investigate deeply the optimal
property of the estimation of the generalization error based on blocked 3 × 2
cross validation. In a more general case with m ≥ 3, m × 2 cross validation
with a restricted number of overlapping samples is called block-regularized
m × 2 cross validation (abbreviated as m × 2 BCV). In this letter, we study
the property of the m × 2 BCV estimator of generalization error theoreti-
cally and provide a novel construction algorithm of data partitioning for
an m × 2 BCV. Furthermore, we provide an empirical guide for selection of
the replication count of m and propose a conservative estimator of variance
of the block-regularized m × 2 cross-validated estimator.

This letter is organized as follows. Section 2 introduces several basic
notations and definitions. Section 3 presents a theoretical analysis of the
variance of the m × 2 BCV estimator of the generalization error. A con-
struction method of m × 2 BCV based on a two-level orthogonal array is
provided in section 4. Section 5 discusses the choice of m in m × 2 BCV. The
developed variance estimators are described in section 6. Section 7 presents
the simulation experiments, and section 8 concludes.

2 Notations and Definitions

We assume that data set Dn consists of n samples (i.e., Dn = {zi : zi =
(xi, yi), i = 1, . . . , n}), where zis are independently sampled from unknown
distribution P , xi is a predictor variable vector, and yi is a response variable.
A(Dn) denotes the prediction model trained on data set Dn by learning
algorithm A. We let L(., .) be the loss function. In this letter, zero-one loss
is used for classification problems and squared loss is used for regression
problems. Then the generalization error of algorithm A is defined as

μ(n) � EDn,z[L(A(Dn), z)]. (2.1)

Generally the generalization error is estimated by some kind of cross
validation in practice. In this study, we consider m × 2 cross validation. In
m × 2 cross validation, each standard two-fold cross validation is conducted
by randomly splitting the entire data set into two equal-sized blocks. Several
notations and definitions follow:

Definition 1. The S � (I (t), I (v)) is called a partition of index set I, where I (t) and
I (v) are random index sets from I = {1, 2, . . . , n} of data set Dn. I (t) and I (v) satisfy
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I (t) ∪ I (v) = I, I (t) ∩ I (v) = ∅, and |I (t)| = |I (v)| = n
2 . Then S = {< Si ,S�

i >: Si =
(I (t)

i , I (v)
i ),S�

i = (I (v)
i , I (t)

i ), i = 1, 2, . . . , m} is the set of m × 2 partitions for I.

Let D(t) = {zi : i ∈ I(t)} and D(v) = {zi : i ∈ I(v)} denote the training and
test sets, respectively. Then Dn = D(t) ∪ D(v). D(t) and D(v) serve as training
or test sets in a two-fold cross validation.

Remark 1. For the two-fold cross validation, the training set D(t) and the
test set D(v) are both generally called data blocks.

Definition 2. For any two partitions Si = (I (t)
i , I (v)

i ) and S j = (I (t)
j , I (v)

j ) in S,

φi j = |I (t)
i ∩ I (t)

j | is defined as number of overlapping samples between Si and
S j , where φi j = x, 0 ≤ x ≤ n/2 and i, j = 1, 2, . . . , m. Matrix Φ = (φi j ) can be
regarded as a measure of partition set S.

Remark 2. In fact, the ith and jth elements of S are 〈Si,S�
i 〉 and 〈S j,S�

j 〉,
respectively. These two pairs of partitions can result in four numbers of
overlapping samples through a comparison of Si and S j, S�

i and S j, Si and
S�

j , and S�
i and S�

j . However, if we let the number of overlapping samples
between Si and S j be φi j, the other three numbers of overlapping samples
are equal to n/2 − φi j, n/2 − φi j and φi j. Moreover, these four numbers have
the same distribution. Therefore, we simply consider φi j, the number of
overlapping samples between Si and S j, in definition 2.

Generally φi j is an integer-valued random variable in [0, n/2]. Markatou
et al. (2005) proved that φi j is drawn from hypergeometric distribution,
and its expectation is n/4. If there are more than two partitions, multiple
numbers of overlapping samples should be considered. Furthermore, all
differences between the multiple numbers of overlapping samples and n/4
should be regularized to reduce the variance of the cross-validated estima-
tor of the generalization error. On the basis of these intuitions, we propose a
new partitioning method, block-regularized cross-validation partitions, to
control the differences. Our method aims to control the difference between
each number of overlapping samples and n/4 into smaller than its expec-
tation in a random situation. This expectation is provided by Wang et al.
(2015) and is expressed as

E
∣∣∣φi j − n

4

∣∣∣ = n2

4(n − 1)

(2n′−1
n′
)(2n′−1

n′−1

)( n−2
2n′−1

) + n(n − 2)

8(n − 1)

(2n′−1
n′−12

)( n−2
2n′−2

) − n
4

(2n′
n′2
)( n

2n′
) , (2.2)

where n is the data set size and n′ = n/4.
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Based on the above analysis, we propose a definition of the block-
regularized cross-validation partitions as follows.

Definition 3. Given a set of partitions S of m × 2 for all φi j s (i �= j ) in Φ,
if regularized condition |φi j − n/4| ≤ c is satisfied, in which c ≥ 0 is called a
regularization parameter, then the partition set S is called a block-regularized
partition set and denoted as S

b and the measure Φb , accordingly. The m × 2 cross
validation on S

b is called block-regularized m × 2 cross validation(abbreviated as
m × 2 BCV). When n = 4l, l ∈ N+ and c = 0, that is, φi j ≡ n/4, the corresponding
m × 2 BCV is called a balanced m × 2 BCV and denoted as S

∗. In this case, the
measure Φ for S degenerates into a constant matrix, denoted as Φ∗.

Remark 3. The regularization parameter c should not exceed the expecta-
tion of |φi j − n/4| of the m × 2 cross validation, which is defined in equa-
tion 2.2.

In the following sections, the m × 2 cross validation is abbreviated as m ×
2 CV. Definitions of some estimators of the generalization error (Friedman
et al., 2001) are provided in the following paragraphs.

Definition 4. For a given partition S = (I (t), I (v)), the hold-out estimator (HO
estimator) of μ(n) is defined as

μ̂
HO

(S) �
1

|I (v)|
∑
j∈I (v)

L(A(D(t)); z j ) =
2
n

∑
j∈I (v)

L(A(D(t)); z j ). (2.3)

The standard two-fold cross-validated estimator (S2CV estimator) of μ(n) can
be written as

μ̂(S) �
1
2
μ̂

HO
(S) +

1
2
μ̂

HO
(S�), (2.4)

where S� = (I (v), I (t)).
The m × 2 cross-validated estimator (m × 2 CV estimator)of μ(n) can be ex-

pressed as

μ̂m×2(S) �
1
m

m∑
i=1

μ̂(Si ), (2.5)

where, μ̂(Si ) is the S2CV estimator for partition Si . Accordingly, the estimator
of μ(n) based on S

b is denoted as μ̂m×2(Sb) which is a block-regularized m × 2
cross-validated estimator (m × 2 BCV estimator) of μ(n).
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3 Theoretical Analysis of Var(μ̂m×2(S))

The variance of the m × 2 CV estimator can be decomposed as

Var(μ̂m×2(S)) = 1
m2

m∑
i=1

Var(μ̂(Si))

+ 1
m2

∑
i �= j,i, j=1,2,...,m

Cov(μ̂(Si), μ̂(S j)). (3.1)

The Var(·) should be expressed as VarD,S(·) exactly. But this letter con-
siders the original sample size n fixed and considers only the measure �

for S. From the perspective of measure � for S, all Var(μ̂(Si))s should be
the same for each Si ∈ S. Due to all samples zis in the data set Dn are i.i.d,
Cov(μ̂(Si), μ̂(S j)) depends on only the number of overlapping samples

φi j = |I(t)
i ∩ I(t)

j |. Thus,

Var(μ̂m×2(S)|�) = Var

(
1
m

m∑
i=1

μ̂(Si)|�
)

= 1
m

Var(μ̂(S1)) + 1
m2

m∑
i �= j,i, j=1

Cov(μ̂(Si), μ̂(S j)|φi j),

(3.2)

where Var(.|�) is with regard to random samples Dn.
Motivated by experimental design in statistics (Wu & Hamada, 2011),

we attempt to design a set of partitions S to reduce the effects of random
variable φi j. We will prove that when φi j = n/4, for all i �= j, Var(μ̂m×2(S)|�)

reaches the minimum, that is, S
∗ (balanced m × 2 BCV) satisfies

S
∗ = argmin

S

Var(μ̂m×2(S)|�). (3.3)

In the expression of Var(μ̂m×2(S)|�) in equation 3.2, the key issue is to
comprehensively analyze the properties of Cov(μ̂(Si), μ̂(S j)|φi j). Lemma
1 characterizes the lower convex property of Cov(μ̂

HO
(Si), μ̂HO

(S j)|φi j).
Lemma 2 characterizes the minimum property of Cov(μ̂(Si), μ̂(S j)|φi j) at
φi j = n/4.

Lemma 1. We let e j (S) � L(A(D(t)); z j ) be the loss function on zj for j =

1, 2, . . . , n/2 and S1 = (I (t)
1 , I (v)

1 ) and S2 = (I (t)
2 , I (v)

2 ) be two random partitions
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Figure 2: Demo of values of parameters σ 2, ω, τ , and γ .

of I = {1, . . . , n}, and φ is the number of overlapping samples between S1 and S2.
We have:

i. For i, j ∈ {1, 2, . . . , n/2}, when φ = n/4, Cov(ei (S1), e j (S2)|φ) has the fol-
lowing form:

Cov(ei (S1), e j (S2)|φ = n/4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2 i = j, i, j ∈ (I (v)
1 ∩ I (v)

2 )

ω i �= j, i, j ∈ (I (v)
1 ∩ I (v)

2 )

γ i ∈ I (v)
1 \(I (v)

1 ∩ I (v)
2 ) and

j ∈ I (v)
2 \(I (v)

1 ∩ I (v)
2 )

τ others

where σ 2, ω, γ, τ are constants, as shown in Figure 2.
ii. If denoting f (x) � Cov(μ̂

HO
(S1), μ̂

HO
(S2)|φ = x), f (x) can be expressed as

a quadratic polynomial function of x:

f (x) �
4
n2

[
(ω + γ − 2τ ) · x2 + (σ 2 − ω − nγ + nτ ) · x +

n2

4
γ

]
.

(3.4)

Therefore, f (x) is a lower convex function with regard to x when ω + γ ≥
2τ .
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Proof. From the definition of a partition, we know that four index subsets
I(t)
1 ∩ I(t)

2 , I(t)
1 \(I(t)

1 ∩ I(t)
2 ), I(v)

1 \(I(v)

1 ∩ I(v)

2 ), and I(v)

1 ∩ I(v)

2 can be obtained from
S1 = (I(t)

1 , I(v)

1 ) and S2 = (I(t)
2 , I(v)

2 ). For S1, we have

I = I(t)
1

⋃
I(v)

1

= [I(t)
1 ∩ I(t)

2 ] ∪ [I(t)
1 \(I(t)

1 ∩ I(t)
2 )]

⋃
[I(v)

1 \(I(v)

1 ∩ I(v)

2 )] ∪ [I(v)

1 ∩ I(v)

2 ].

For S2, the following equation holds:

I = I(t)
2

⋃
I(v)

2

= [I(t)
1 ∩ I(t)

2 ] ∪ [I(t)
2 \(I(t)

1 ∩ I(t)
2 )]

⋃
[I(v)

2 \(I(v)

1 ∩ I(v)

2 )] ∪ [I(v)

2 ∩ I(v)

2 ].

Obviously we can get

I(t)
1 \(I(t)

1 ∩ I(t)
2 ) = I(v)

2 \(I(v)

1 ∩ I(v)

2 ), I(t)
2 \(I(t)

1 ∩ I(t)
2 ) = I(v)

1 \(I(v)

1 ∩ I(v)

2 )

(3.5)

|I(t)
1 ∩ I(t)

2 | = |I(v)

1 ∩ I(v)

2 | = x,

|I(t)
1 \(I(t)

1 ∩ I(t)
2 )| = |I(t)

2 \(I(t)
1 ∩ I(t)

2 )| = n
2

− x.

Then,

f (x) � Cov(μ̂
HO

(S1), μ̂HO
(S2)|φ = x)

= 4
n2 Cov

⎛⎜⎝∑
i∈I(v)

1

ei(S1),
∑
j∈I(v)

2

e j(S2)|φ = x

⎞⎟⎠

= 4
n2

⎡⎢⎣Cov

⎛⎜⎝ ∑
i∈(I(v)

1 \(I(v)

1 ∩I(v)

2 ))

ei(S1),
∑

k∈(I(v)

2 \(I(v)

1 ∩I(v)

2 ))

ek(S2|φ = x)

⎞⎟⎠

+ Cov

⎛⎜⎝ ∑
i∈(I(v)

1 \(I(v)

1 ∩I(v)

2 ))

ei(S1),
∑

j∈(I(v)

1 ∩I(v)

2 )

e j(S2)|φ = x

⎞⎟⎠

+ Cov

⎛⎜⎝ ∑
j∈(I(v)

1 ∩I(v)

2 )

e j(S1),
∑

k∈(I(v)

2 \(I(v)

1 ∩I(v)

2 ))

ek(S2)|φ = x

⎞⎟⎠
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+ Cov

⎛⎜⎝ ∑
j∈(I(v)

1 ∩I(v)

2 )

e j(S1),
∑

j∈(I(v)

1 ∩I(v)

2 )

e j(S2)|φ = x

⎞⎟⎠
⎤⎥⎦ (3.6)

Finally, we obtain

f (x) = 4
n2

[(n
2

− x2
)

γ + 2x
(n

2
− x

)
τ + xσ 2 + (x2 − x)ω

]
= 4

n2

[
(ω + γ − 2τ ) · x2 + (σ 2 − ω − nγ + nτ ) · x + n2

4
γ

]
,

in which f (x) is a lower convex function with regard to x when ω + γ > 2τ .

Remark 4. In actuality, the parameters of σ 2, ω, γ , and τ have relationships
with x. Nevertheless, we mainly focus on the values of these parameters at
the point of x = n/4 because the expectation of the number of overlapping
samples is n/4.

In order to clearly interpret the condition ω + γ > 2τ , we provide some
intuitive clarifications of ω, γ , and τ :

• ω is the covariance of two loss functions with test samples of each pair
in block I(v)

1 ∩ I(v)

2 . Specifically, the first loss function uses training set
of I(t)

1 and the test sample of zi, ∀i ∈ I(v)

1 ∩ I(v)

2 . The second loss function
uses I(t)

2 as the training set and tests on z j, ∀ j ∈ I(v)

1 ∩ I(v)

2 and i �= j.
Given that zi and z j do not appear in the two training sets and are
independent, ω merely measures the correlations caused by the two
training sets, assuming that the correlation is affected by nothing else
except the training and test sets. Moreover, i = j corresponds to σ 2.

• τ is the covariance of two loss functions with two training sets of I(t)
1

and I(t)
2 and two test samples of zi, ∀i ∈ I(v)

1 ∩ I(v)

2 and z j, ∀ j ∈ I(t)
1 \(I(t)

1 ∩
I(t)
2 ) (or z j,∀ j ∈ I(t)

2 \(I(t)
1 ∩ I(t)

2 )). Given that z j occurs in the training set

of I(t)
1 (or I(t)

2 ), τ measures not only the correlation caused by the two
training sets but also the correlation caused by the appearance of test
sample z j in training set I(t)

1 (or I(t)
2 ). Therefore, τ is greater than ω.

• γ is the covariance of two loss functions with two test samples of zi,
∀i ∈ I(t)

2 \(I(t)
1 ∩ I(t)

2 ), and z j, ∀ j ∈ I(t)
1 \(I(t)

1 ∩ I(t)
2 ). The first loss function

uses the training set I(t)
1 and zi, ∀i ∈ I(t)

2 \(I(t)
1 ∩ I(t)

2 ) as a test sample,
and the second loss function uses the training set I(t)

2 and z j, ∀ j ∈
I(t)
1 \(I(t)

1 ∩ I(t)
2 ) as a test sample. Test samples zi and z j both occur in

the other’s training set. Therefore, γ measures the correlations caused
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by the two training sets and the appearance of both test samples in
the other’s training sets. Intuitively, γ is greater than τ—γ > τ > ω.

Furthermore, ω + γ − 2τ actually measures the differences between
γ − τ and τ − ω. Specifically, it measures how the increment of covariance
of two loss functions changes with the occurrence of one partition’s test
sample in the other partition’s training set. τ − ω indicates the increment
of covariances caused by only one test sample occurring in the training set,
and γ − τ indicates the increment of covariances caused by both test sam-
ples appearing in the training sets. Therefore, the intuitive interpretation of
γ + ω > 2τ is γ − τ > τ − ω, that is, the increase from ω to γ is nonlinear
and the increment between γ and τ is larger than that between τ and ω.

Remark 5. Proving that the condition ω + γ > 2τ holds in broad families
of loss functions, algorithms, and data populations is difficult. However,
with squared loss function, proving that the condition ω + γ > 2τ holds
for mean regression and multivariate regression is possible. The detailed
proofs are in the appendix. Moreover, some simulation results are presented
in section 7.2 to illustrate that this condition is true.

Lemma 2. We let μ̂(S1) and μ̂(S2) be two S2CV estimators of μ(n) on partitions
S1 and S2, and g(x) � Cov(μ̂(S1), μ̂(S2)|φ = x). Then, for any x ∈ [0, n

2 ], g(x) =
1
2 ( f (x) + f ( n

2 − x)). Function g(x) has the following two properties:

i. Symmetry: g(x) = g( n
2 − x).

ii. Boundedness: g( n
4 ) � g(x) � g(0) = Var(μ̂(Si )), i = 1, 2, . . . , m.

Proof. If |I(t)
1 ∩ I(t)

2 | = x, then

|I(v)

1 ∩ I(v)

2 | = x, |I(t)
1 ∩ I(v)

2 | = |I(v)

1 ∩ I(t)
2 | = n

2
− x.

From the definition of S2CV estimator, we have

g(x) � Cov(μ̂(S1), μ̂(S2)|φ = x)

= Cov
(

1
2
(μ̂

HO
(S1) + μ̂

HO
(S�

1 )

)
,

1
2
(μ̂

HO
(S2) + μ̂

HO
(S�

2 ))|φ = x)

= 1
4

[Cov(μ̂
HO

(S1), μ̂HO
(S2)|φ = x)

+ Cov
(
μ̂

HO
(S1), μ̂HO

(S�
2 )|φ = n

2
− x

)
+ Cov

(
μ̂

HO
(S�

1 ), μ̂
HO

(S2)|φ = n
2

− x
)

+ Cov(μ̂
HO

(S�
1 ), μ̂

HO
(S�

2 )|φ = x)] (3.7)
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According to the definition of f (x) � Cov(μ̂
HO

(S1), μ̂HO
(S2)|φ = x), we

have

Cov(μ̂
HO

(S�
1 ), μ̂

HO
(S�

2 )|φ = x) = f (x)

and

Cov
(
μ̂

HO
(S�

1 ), μ̂
HO

(S2)|φ = n
2

− x
)

= Cov
(
μ̂

HO
(S1), μ̂HO

(S�
2 )|φ = n

2
− x

)
= f

(n
2

− x
)

.

Thus,

g(x) = 1
2

(
f (x) + f

(n
2

− x
))

. (3.8)

Obviously, g(x) = g( n
2 − x), that is, g(x) is a symmetric function, and its

symmetry axis is x = n
4 . In particular, g( n

4 ) = f ( n
4 ).

According to the property of covariance, we have

g(x) = Cov(μ̂(S1), μ̂(S2)|φ = x)

�
√

Var(μ̂(S1)|φ = x) · Var(μ̂(S2)|φ = x). (3.9)

Together with the fact that g(0) = Var(μ̂(Si)|φ = 0) = Var(μ̂(Si)), i =
1, 2, . . . , m and the symmetric property of g(x), we have

g(x) � g(0) = g
(n

2

)
.

According to the lower convex property of f (x) (lemma 1), based on
Jensen’s inequality, we can easily obtain 1

2 f (x) + 1
2 f ( n

2 − x) � f ( n
4 ) = g( n

4 ),
that is,

g(x) � g
(n

4

)
where, x ∈ [0, n

2 ].
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In the simulated experiments in section 7.3, we provide some simulated
curves of function g(x) and their approximations in parameters σ 2, ω, γ ,
and τ at a neighborhood of x = n

4 .

Theorem 1. Given a set of partitions S of n samples Dn, from the perspective of
measure Φ for S, the variance of an m × 2 CV estimator of generalization error
satisfies

EΦVar(μ̂m×2(S)|Φ) � EΦb Var(μ̂m×2(Sb)|Φb) � EΦ∗ Var(μ̂m×2(S∗)|Φ∗),

(3.10)

where

EΦ∗ Var(μ̂m×2(S∗)|Φ∗) =
1

2m
σ 2(1 + ρ

1
) +

m − 1
m

σ 2ρ
2

(3.11)

• σ 2 = f ( n
2 ) = Var(μ̂

HO
(Si )) is the variance of HO estimators with the size of

a training set of n
2 .

• ρ
1

= f (0)
f ( n

2 ) =
Cov(μ̂

HO
(Si ),μ̂HO

(ST
i ))

Var(μ̂
HO

(Si ))
is the correlation coefficient between two

HO estimators within an S2CV estimator.

• ρ
2

= f ( n
4 )

f ( n
2 ) =

Cov(μ̂
HO

(Si ),μ̂HO
(S j ))

Var(μ̂
HO

(Si ))
is the correlation coefficient of any two S2CV

estimators in an m × 2 BCV estimator.

Proof. We can easily equation 3.10 from lemma 2. Specifically, to prove the
first inequality in equation 3.10, we introduce a random variable ϕ = n/4 −
|φ − n/4| in which φ ∈ �. Due to 0 ≤ φ ≤ n/2, we can obtain 0 ≤ ϕ ≤ n/4 .
Then, by employing Jensen’s inequality on g(ϕ), we can obtain

Eφg(φ) = Eϕg(ϕ) ≥ g(Eϕ) = g
(n

4
− E|φ − n/4|

)
≥ g

(n
4

− c
)

. (3.12)

Using the symmetric property of g(x) clarifies that

Eφg(φ) ≥ g
(n

4
± E|φ − n/4|

)
≥ g

(n
4

± c
)

. (3.13)

Thus, the first inequality holds. The second inequality can be derived
directly because g(φ) reaches its minimum at φ = n/4.

Furthermore, the variance of a balanced m × 2 BCV estimator can be
decomposed into combinations of hold-out estimators as follows:

E�∗ Var(μ̂m×2(S
∗)|�∗) = E�∗ Var

(
1
m

m∑
i=1

μ̂(Si)|�∗
)
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= 1
m

g(0) + m − 1
m

g
(n

4

)
= 1

m

(
1
2

(
f (0) + f

(n
2

)))
+ m − 1

m
f
(n

4

)
= 1

2m
f
(n

2

)(
1 + f (0)

f ( n
2 )

)
+ m − 1

m
f
(n

2

) f ( n
4 )

f ( n
2 )

= 1
2m

σ 2(1 + ρ
1
) + m − 1

m
σ 2ρ

2
.

Corollary 1. For any two partition sets S
∗
1 and S

∗
2 of balanced m × 2 BCV,

Var(μ̂m×2(S∗
1)|Φ) = Var(μ̂m×2(S∗

2)|Φ).

Corollary 2. The variance of a balanced m × 2 BCV estimator obviously decreases
with the increment of m. As m increases, the proportion of the second part m−1

m σ 2ρ
2

in variance Var(μ̂m×2(S∗)|Φ) becomes large.

4 Nested Construction Algorithm of S
b for m × 2 BCV

Although m × 2 BCV has good properties, it has no comprehensive use
in practical applications if it cannot be easily constructed. A classical con-
struction method for S

b for m × 2 BCV is provided in McCarthy (1976). The
construction method employs rows of an orthogonal array. Specifically, the
data set Dn is divided into blocks based on columns of an orthogonal array.
Then, a partition in S

b can be derived by combining the blocks according to
the levels of each row of the orthogonal array. A weakness of the construc-
tion method is that it is not nested; that is, the new S

b for larger m does not
include the previous S

b for small m; thus, it should be reconstructed from
the beginning to create m × 2 BCV with a larger m. Accordingly, training or
testing models should be retaken for any different m of m × 2 BCV.

In this section, we propose a nested construction algorithm of S
b for m × 2

BCV. The algorithm can construct S for m × 2 BCV, along with an increment
of m. The nested construction algorithm and its theoretical guarantee is
presented in theorem 2:

Theorem 2. Assuming that data set Dn of size n can be split into 4k (k is a given
value from {1, 2, . . . , n/4}) disjoint and almost equal-sized blocks (such that the
maximum difference of sizes of any two blocks is one), a partition set S = {Si =
(I (t)

i , I (v)
i ), i = 1, 2, . . . , 4k − 1} can be constructed by using an orthogonal array

OA(4k, 24k−1) according to the following two steps:
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Table 1: Orthogonal Array OA(8, 27).

Row Index a b ab c ac bc abc

1↔ I(8)

1 + + + + + + +
2↔ I(8)

2 - + - + - + -
3↔ I(8)

3 + - - + + - -
4↔ I(8)

4 - - + + - - +
5↔ I(8)

5 + + + - - - -
6↔ I(8)

6 - + - - + - +
7↔ I(8)

7 + - - - - + +
8↔ I(8)

8 - - + - + + -

i. The i-th column of orthogonal array OA(4k, 24k−1) corresponds to partition
Si = (I (t)

i , I (v)
i ), where I (t)

i is the set of rows of the “+” level of the i-th column.
Similarly, the rows of the “-” level of the i-th column form the set I (v)

i .
ii. According to step i, by taking over all columns of OA(4k, 24k−1), we can

obtain 4k − 1 partitions Si s of I for i = 1, 2, . . . , 4k − 1.

Then, S = {Si = (I {(t)}
i , I {(v)}

i ), i = 1, 2, . . . , 4k − 1} is a block-regularized partition
set S

b with regularized condition |φi j − n/4| � k for any i �= j .

Proof. Orthogonal array OA(4k, 24k−1) corresponds to a matrix with 4k rows
and 4k − 1 columns. The elements of the matrix consist of “+” and “-”,
which are called levels in statistics. For any two columns in OA(4k, 24k−1),
there are only four combinations of (+,+)(+,−)(−,+)(−,−) and equal
replicated times for each combination. This condition means that the repli-
cated time for each combination is n/4, that is, the corresponding number
of the same samples in any two columns is n/4. Thus, 4k − 1 replications of
two-fold cross validation constructed by the above operation form the S of
(4k − 1) × 2.

Since the maximum difference of size of any two of 4k disjoint and equal-
sized blocks is one and testing sets from any two independent partitions
contain common k blocks, |φi j − n/4| � k,for any i �= j.

Example 2. This example illustrates the construction process of S
b of 7 × 2.

Index set I from data set Dn is split into 4k = 8 blocks denoted as I(8)
i , i =

1, 2, 3, . . . , 8. Orthogonal array OA(8, 27) is employed (see Table 1). Then
S

b of 7 × 2 is constructed with Table 2. When n = 400, the expectation of
|φi j − n/4| of m × 2 CV is about 3.98. However, our construction algorithm
can constrain k to 2.

Remark 6. For data set Dn with sample size n, according to the construction
method of theorem 2, the maximum value of m in S

b of m × 2 should be
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Table 2: Mapping between Si and I(8)
i for S

b of 7 × 2.

Partition I(t)i I(v)
i

S1 I(8)

1 , I(8)

3 , I(8)

5 , I(8)

7 I(8)

2 , I(8)

4 , I(8)

6 , I(8)

6

S2 I(8)

1 , I(8)

2 , I(8)

5 , I(8)

6 I(8)

3 , I(8)

4 , I(8)

7 , I(8)

8

S3 I(8)

1 , I(8)

4 , I(8)

5 , I(8)

8 I(8)

2 , I(8)

3 , I(8)

6 , I(8)

7

S4 I(8)

1 , I(8)

2 , I(8)

3 , I(8)

4 I(8)

5 , I(8)

6 , I(8)

7 , I(8)

8

S5 I(8)

1 , I(8)

3 , I(8)

6 , I(8)

8 I(8)

2 , I(8)

4 , I(8)

5 , I(8)

7

S6 I(8)

1 , I(8)

2 , I(8)

7 , I(8)

8 I(8)

3 , I(8)

4 , I(8)

5 , I(8)

6

S7 I(8)

1 , I(8)

4 , I(8)

6 , I(8)

7 I(8)

2 , I(8)

3 , I(8)

5 , I(8)

8

n − 1 because the OA(4k, 24k−1) employed is a saturated orthogonal array
(Wu & Hamada, 2011).

Remark 7. The blocked 3 × 2 cross validation provided by Wang et al.
(2014) is a special case of the proposed m × 2 BCV with m = 3. In fact, the
construction method of blocked 3 × 2 cross validation is in accordance with
our method constructed based on OA(4, 23).

The construction of S
b of 7 × 2 is intuitively related to S

b of 3 × 2. In data
partitioning for S

b of 3 × 2, each of the four blocks from S
b of 3 × 2 is split

further into two equal-sized subblocks. These eight blocks can also be used
to construct S

b of 7 × 2. In essence, the partitions for S
b of 7 × 2 include the

partitions for S
b of 3 × 2.

Generally when 4k = 2p, S
b of (2p − 1) × 2 can be constructed based on

S
b of (2p−1 − 1) × 2. Specifically, S

b of (2p − 1) × 2 is expanded from S
b of

(2p−1 − 1) × 2. In this letter, this construction method is called the nested
construction algorithm. It is formulated as follows:

1. Construct an orthogonal array OA(2p, 22p−1) based on OA(2p−1,

22p−1−1), p ≥ 3 (Wu & Hamada, 2011). Specifically, the OA(2p−1,

22p−1−1) corresponds to a Hardmard matrix H. Then matrix
[

H H
H −H

]
is still a Hardmard matrix, which corresponds to OA(2p, 22p−1).

2. Split all blocks used in S
b of 2p−1 × 2 into two nearly equal-sized

subblocks. For any j ∈ {1, 2, . . . , 2p−1}, the original jth block should
be split evenly and denoted as the jth subblock and the ( j + p)th
subblock.

3. Generate the ( j + p)th partition in S
b of (2p − 1) × 2 by employing

step i of theorem 2 on the ( j + p)th column of the OA(2p, 22p−1) and
the blocks of step ii.
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Table 3: Orthogonal Array OA(4, 23).

Row Index a b ab

1↔ I(4)

1 + + +

2↔ I(4)

2 - + -

3↔ I(4)

3 + - -

4↔ I(4)

4 - - +

Table 4: Mapping of Blocks and Partitions between 3 × 2 BCV and 7 × 2 BCV.

I(t)i I(v)
i

Partition 3 × 2 BCV 7 × 2 BCV 3 × 2 BCV 7 × 2 BCV

S1 I(4)

1 , I(4)

3 I(8)

1 , I(8)

3 , I(8)

5 , I(8)

7 I(4)

2 , I(4)

4 I(8)

2 , I(8)

4 , I(8)

6 , I(8)

8

S2 I(4)

1 , I(4)

2 I(8)

1 , I(8)

2 , I(8)

5 , I(8)

6 I(4)

3 , I(4)

4 I(8)

3 , I(8)

4 , I(8)

7 , I(8)

8

S3 I(4)

1 , I(4)

4 I(8)

1 , I(8)

4 , I(8)

5 , I(8)

8 I(4)

2 , I(4)

3 I(8)

2 , I(8)

3 , I(8)

6 , I(8)

7

S4 I(8)

1 , I(8)

2 , I(8)

3 , I(8)

4 I(8)

5 , I(8)

6 , I(8)

7 , I(8)

8

S5 I(8)

1 , I(8)

3 , I(8)

6 , I(8)

8 I(8)

2 , I(8)

4 , I(8)

5 , I(8)

7

S6 I(8)

1 , I(8)

2 , I(8)

7 , I(8)

8 I(8)

3 , I(8)

4 , I(8)

5 , I(8)

6

S7 I(8)

1 , I(8)

4 , I(8)

6 , I(8)

7 I(8)

2 , I(8)

3 , I(8)

5 , I(8)

8

The following example illustrates the nested construction of S
b of 7 × 2

based on S
b of 3 × 2.

Example 3. S
b of 3 × 2 is based on OA(4, 23)(see Table 3) and the four blocks

(I(4)

1 , I(4)

2 , I(4)

3 , I(4)

4 ). The upper left-hand corner 4 × 3 subarray in Table 1 is
identical to OA(4, 23) and the fourth column of OA(8, 27). Next, the four
blocks (I(4)

1 , I(4)

2 , I(4)

3 , I(4)

4 ) are split into eight subblocks (I(8)

1 , I(4)

2 , I(4)

3 , . . . , I(8)

8 )

using the following rules:

I(4)

1 ↔ I(8)

1 , I(8)

5 I(4)

2 ↔ I(8)

2 , I(8)

6 ,

I(4)

3 ↔ I(8)

3 , I(8)

7 I(4)

4 ↔ I(8)

4 , I(8)

8 .

Finally, the partitions of S4,S5,S6,S7 in S
b of 7 × 2 are derived using the

last four columns of OA(8, 27) and eight subblocks. All the partitions in S
b

of 3 × 2 and S
b of 7 × 2 are compared in Table 4. Their first three partitions

are illustrated as identical.
Corollary 2 indicates that the increase in m in m × 2 BCV reduces the vari-

ance of the estimator of the generalization error. Thus, continually adding
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the number of partitions on the basis of the previous cross-validated esti-
mators to form the next m × 2 BCV is very useful in practical experiments.

5 Selection of m

In practical applications, providing a selection method of m is necessary.
equation 3.11 of theorem 1 shows that EVar(μ̂m×2(S|�∗)) = 1

2mσ 2(1 + ρ
1
) +

m−1
m σ 2ρ

2
. As m increases, the magnitude of variance reduction declines as

well, although the variance gradually decreases. Considering the reduction
rate of variance,

EVar(μ̂m×2(S|�∗)) − EVar(μ̂(m+1)×2(S|�∗))
EVar(μ̂m×2(S|�∗))

= 1 + ρ1 − 2ρ2

(m + 1)(1 + ρ1) + 2(m2 − 1)ρ2
. (5.1)

If the value is very small, such as smaller than α (5% or 1%), additional
replications are not required. Hence, the problem of determining m can be
solved with this idea.

However, ρ1 and ρ2 in the reduction rate of variance are unknown. The
values of ρ1 and ρ2 should be related to the sample size, the used model
(algorithm), and so on. It should not be related to m. Based on the large
number of simulation experiments conducted by Wang et al. (2014), we
believe that the ranges of the values of ρ1 and ρ2 should be 0 < ρ1, ρ2 < 1/2.

We let ARRV denote the averaged reduction rate of variance over the
range of 0 < ρ1, ρ2 < 1/2 regardless of the model used. Hence, we recom-
mend determining m by limiting ARRV to smaller than α:

ARRV � 4
∫ 0.5

0

∫ 0.5

0

1 + ρ1 − 2ρ2

(m + 1)(1 + ρ1) + 2(m2 − 1)ρ2
dρ1dρ2 < α. (5.2)

Table 5 shows that the 3 × 2 BCV provided by Wang et al. (2014) has an
ARRV of less than 10%. If one wishes the averaged reduction rate of vari-
ance to be smaller than α = 5%, one should make m at least larger than 5.
This may provide an explanation as to why 5 × 2 cross validation is empir-
ically recommended by several researchers in the comparison of algorithm
performance (Dietterich, 1998; Alpaydin, 1999; Yildiz, 2013). Furthermore,
if one wishes the averaged reduction rate of variance to be smaller than
α = 1%, one must make m ≥ 16.



Blocked m × 2 Cross Validation 537

Table 5: Averaged Reduction Rate of Variance with Regard to m.

m ARRV α Scheme of Cross Validation

2 0.1552
3 0.0984 <10% 3 × 2 BCV
4 0.0688
5 0.0516
6 0.0404 <5% 6 × 2 BCV
7 0.0324

11 0.0168
15 0.0105
16 0.0095 <1% 16 × 2 BCV

Table 6: Comparison of New and Old Notations.

New Notations Old Notations Meaning

μ̂m×2 μ̂m×2(S
∗) Balanced m × 2 BCV estimator

μ̂(i) μ̂(Si) The ith S2CV estimator in μ̂m×2(S
b)

μ̂
(i)
1 μ̂

HO
(Si) One HO estimator in μ̂(Si)

μ̂
(i)
2 μ̂

HO
(S�

i ) Another HO estimator in μ̂(Si)

6 Estimation of Var(μ̂m×2(S
∗))

Before introducing the variance estimator, we provide this theorem:

Theorem 3. Universal unbiased estimator of Var(μ̂m×2(S∗)) does not exist.

Here, universal refers to the estimation statistic that it is valid under all
distributions of samples. The proof of theorem 3 is similar to that provided
by Bengio and Grandvalet (2004) and Yang, Wang, Wang, and Li (2014);
thus, it is omitted in this letter.

For a simple and clear expression of the idea, the notations in the above
sections are simplified in Table 6.

6.1 Estimators of Var(μ̂m×2). In this section, we consider a generic es-
timator of Var(μ̂m×2) that depends on the within-block and between-block
sample variances. Similar to Wang et al. (2014), the compromise of the
within-block and between-blocks sample variances can be expressed,

V̂ar(μ̂m×2) = λ1
1

m2

m∑
i=1

2∑
k=1

(μ̂
(i)
k − μ̂(i))2 + λ2

1
m − 1

m∑
i=1

(μ̂(i) − μ̂m×2)
2,

(6.1)
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where λ1 and λ2 are two hyperparameters to tune the relative importance
of the within-block and between-block sample variances in the variance
estimator because the within-block sample variance is almost a liberal esti-
mator of variance.

The expectation of V̂ar(μ̂m×2) in equation 6.1 is

E(V̂ar(μ̂m×2)) = 1
2m

σ 2(1 + ρ1) + 1
m

σ 2
[(

λ1 + m
2

λ2 − 1
2

)
−
(

λ1 − m
2

λ2 + 1
2

)
ρ1 − mλ2ρ2

]
. (6.2)

Whether this type of estimator is liberal or conservative depends on
the selection of the values of λ1 and λ2. However, finding universal good
values of λ1 and λ2 is difficult. We provide several specific pairs of values
to construct three variance estimators:

1. V̂ar1(μ̂m×2): when λ1 = m
2 and λ2 = 0:

V̂ar1(μ̂m×2) �
1

2m

m∑
i=1

2∑
k=1

(μ̂
(i)
k − μ̂(i))2, (6.3)

E(V̂ar1(μ̂m×2)) = 1
2m

σ 2(1 + ρ1) + m − 1
m

σ 2
[

1
2

− m + 1
2(m − 1)

ρ1

]
,

E(V̂ar1(μ̂m×2)) − Var(μ̂m×2) = m − 1
m

σ 2
[

1
2

− m + 1
2(m − 1)

ρ1 − ρ2

]
.

(6.4)

As long as ρ1 and ρ2 satisfy 1
2 > ρ2 + m+1

2(m−1)
ρ1, E(V̂ar1(μ̂m×2)) >

Var(μ̂m×2).
2. V̂ar2(μ̂m×2): when λ1 = m

2 and λ2 = m−1
m :

V̂ar2(μ̂m×2) �
1

2m

m∑
i=1

2∑
k=1

(μ̂
(i)
k − μ̂m×2)

2, (6.5)

E(V̂ar2(μ̂m×2)) = 1
2m

σ 2(1 + ρ1) + m − 1
m

σ 2
[

1 − 1
m − 1

ρ1 − ρ2

]
,

(6.6)

E(V̂ar2(μ̂m×2)) − Var(μ̂m×2) = m − 1
m

σ 2
[

1 − 1
(m − 1)

ρ1 − 2ρ2

]
.

(6.7)

When ρ1 and ρ2 satisfy 1
2 > ρ2 + 1

2(m−1)
ρ1, E(V̂ar2(μ̂m×2)) >

Var(μ̂m×2).
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3. V̂ar3(μ̂m×2): when λ1 = m
2 and λ2 = m+1

m :

V̂ar3(μ̂m×2) �
1

2m

m∑
i=1

2∑
k=1

(μ̂
(i)
k − μ̂(i))2 + m + 1

m(m − 1)

m∑
i=1

(μ̂(i) − μ̂m×2)
2, (6.8)

E(V̂ar3(μ̂m×2)) = 1
2m

σ 2(1 + ρ1) + m − 1
m

σ 2
[

m
m − 1

− m + 1
m − 1

ρ2

]
,

E(V̂ar3(μ̂m×2)) − Var(μ̂m×2) = m − 1
m

σ 2
[

m
m − 1

− 2m
m − 1

ρ2

]
.

(6.9)

As long as 1
2 > ρ2, E(V̂ar3(μ̂m×2)) > Var(μ̂m×2).

Remark 8. According to proposition 2 in Wang et al. (2014), if the loss
function does not depend on actual examples and the underlying algorithm,
then ρ2 = 0.5. However, this is a balanced result. In fact, the loss function
must depend on the data and the algorithm. Thus, ρ2 should be smaller than
0.5. The simulation experiments in the work of Wang et al. (2014) validated
that 1

2 > ρ2, ρ1 > 0.

6.2 Comparison of the Estimators of Var(μ̂m×2). To provide a convinc-
ing statistical inference in the comparison of algorithm performance and
interval estimation, conservative variance estimation should be provided.
The admissible (ρ1, ρ2) regions where the above three variances are conser-
vative estimators are shown in Figure 3 for m = 3, 5, 7, 9.

Figure 3 shows that V̂ar1(μ̂m×2) being conservative in a large region of 0 <

ρ1, ρ2 < 1
2 cannot be guaranteed. Although the coverage region increases

as m increases, it can at most cover three-quarters of the entire region (see
Table 7). For V̂ar2(μ̂m×2), its expression is simple and clear. The admissible
(ρ1, ρ2) region satisfying the condition 1

2 > ρ2 + 1
2(m−1)

ρ1 covers most of
the region of 0 < ρ1, ρ2 < 1/2. As m increases, its coverage region becomes
close to the entire region. Furthermore, the admissible region of the third
variance estimator, V̂ar3(μ̂m×2), covers all area of the region. Therefore, the
V̂ar3(μ̂m×2) is the most conservative estimator among the three estimators.

Based on this analysis, we recommend V̂ar2(μ̂m×2) as an estimator of
Var(μ̂m×2). The simulation experiments in section 7.5 show that V̂ar2(μ̂m×2)

is a suitable estimator of Var(μ̂m×2).

7 Simulation Study

In this section, we demonstrate the following through simulated experi-
ments:
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Figure 3: Admissible (ρ1, ρ2) regions where the three variance estimators are
conservative.

Table 7: Comparison of the Three Variance Estimators.

Condition That Ratio of the Admissible (ρ1, ρ2)

Case Estimator E(V̂ar(μ̂m×2)) > Var(μ̂m×2) Region and Entire Region

1 V̂ar1(μ̂m×2) 1
2 > ρ2 + m+1

2(m−1)
ρ1

3m−5
4(m−1)

× 100%

2 V̂ar2(μ̂m×2) 1
2 > ρ2 + 1

2(m−1)
ρ1

4m−5
4(m−1)

× 100%

3 V̂ar3(μ̂m×2) 1
2 > ρ2 100%

1. Is coefficient ω + γ − 2τ in the function f (x) larger than 0?
2. How well can f (x) be approximated in parameters σ 2, ω, γ , and τ ,

and how well can g(x) � Cov(μ̂(S1), μ̂(S2)|φ = x) be approximated
in these parameters in the neighborhood of x = n

4 ?
3. How large is the difference of the variances between the m × 2 CV

and m × 2 BCV estimators of the generalization error?
4. Which of the following is a suitable estimator: V̂ar1(μ̂m×2),

V̂ar2(μ̂m×2) and V̂ar3(μ̂m×2)?
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Table 8: Coefficients of f (x) on Simulation Data Set.

Configuration ρ2 ω + γ − 2τ σ 2 − ω − nγ + nτ γ

SREG + lm + 1000 + 100 0.4433 0.0023 3.7212 0.0029
SREG + rid + 1000 + 100 0.442 0.0022 3.7782 0.0028
SREG + lso + 1000 + 100 0.2822 0.0052 51.1965 −0.0005
SCLA + svm + 1000 + 20 0.4308 0.0001 −0.127 0.0002
SCLA + knn + 1000 + 20 0.3078 0.0001 −0.1592 0.0002

7.1 Experimental Setup of Simulations. For regression and classifica-
tion situations, the experimental setups of regression and classification data
sets are considered, respectively. Multiple classical machine learning algo-
rithms are used in two types of data. The detailed settings of our simulated
data sets and algorithms are as follows:

• Simulated regression data set (SREG). The predictor vector xi contains
p independent predictors, which are all extracted from a standard
normal distribution. Response yi = √

3/p
∑p

k=1 xik + εi, in which εi ∼
N(0, 1). The setup of the data set comes from the work of Nadeau et al.
(2003). We let p < n and employ the usual linear regression (lm), ridge
regression (rid), and lasso method (lso) to estimate generalization
error. The loss function is a squared loss function. In this data set, we
use n = 1000 and p = 100.

• Simulated two-class classification data set (SCLA). Data set Dn =
(xi, yi)

n
i=1 is obtained with Prob(Y = 1) = Prob(Y = 0) = 1

2 and X|Y =
0 ∼ N(0, I). For Y = 1, the first 10% of predictors are drawn from a
normal distribution with a mean of 0.5 and a variance of 1; the other
predictors are from a standard normal distribution. Here, we employ
the support vector machine (svm) and the k-nearest neighborhood
algorithm with k = 5 and triangular kernel (knn) as our classifiers.
The loss function is the 0-1 loss function. This data set comes from the
work of Tibshirani & Tibshirani (2009). The size n and dimensionality
p of this data set are set to 1000 and 20.

In the following sections, we use data_name + algor_name + n + p to
denote each simulation configuration. For example, SREG + lm + 1000 + 20
means that the experimental configuration consists of SREG data set with
1000 samples and 20 predictors and a linear regression algorithm.

7.2 Simulation Experiments for Question 1. The experimental purpose
is to examine whether the coefficient ω + γ − 2τ of the quadratic term of
f (x) is larger than zero. The results are shown in Table 8. The condition that
ω + γ > 2τ is satisfied in all cases.
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Figure 4: f (x) and its approximation on the SREG and SCLA data set.

The values of ρ2 are also provided in Table 8. From the table, we see that
0 < ρ2 < 0.5.

7.3 Simulation Experiments for Question 2. Some simulation results
of two functions, f (x) and g(x), and their approximations in parameter
σ 2, ω, τ , and γ in the neighborhood of x = n/4 are provided in Figures 4
and 5.

These results can well support that f (x) and g(x) are lower convex func-
tions, as we proved in the two lemmas, and they can be well approximated
in parameter σ 2, ω, τ , and γ in the neighborhood of x = n/4.

7.4 Simulation Experiments for Question 3. The purpose of this ex-
periment is to examine whether the variance of the m × 2 BCV estimator of
the generalization error is not larger than that of the m × 2 CV estimator.
In this simulation, we randomly generated 10,000 data sets from a popula-
tion and 1,000 sets of partitions for m × 2 CV and m × 2 BCV, respectively.
Then, 10 million estimators of generalization error are derived and sample
variances are computed as reported numeric variances. In these simula-
tions, m = 3, 5, 7, 9 are employed. The experimental results are shown in
Table 9. (The “scale” column provides orders of magnitude for each
row.)
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Figure 5: g(x) and its approximation on SREG and SCLA data set.

Table 9: Variance Comparison on Simulation Data Sets.

Configuration Scale m = 3 m = 5 m = 7 m = 9

m × 2 BCV
SREG + lm + 1000 + 100 10−4 7.5674 4.5481 3.2458 2.5202
SREG + rid + 1000 + 100 10−4 7.4624 4.4860 3.2012 2.4850
SREG + lso + 1000 + 100 10−3 1.8099 1.0841 0.7731 0.5996
SCLA + svm + 1000 + 20 10−5 4.9337 2.9554 2.1120 1.6391
SCLA + knn + 1000 + 20 10−5 6.6614 3.9830 2.8371 2.2051

m × 2 CV
SREG + lm + 1000 + 100 10−4 7.5948 4.5602 3.2599 2.5355
SREG + rid + 1000 + 100 10−4 7.4901 4.4958 3.2149 2.4998
SREG + lso + 1000 + 100 10−3 1.8092 1.0852 0.7754 0.6036
SCLA + svm + 1000 + 20 10−5 4.9454 2.9658 2.1196 1.6493
SCLA + knn + 1000 + 20 10−5 6.6717 4.0049 2.8633 2.2228

For a clear comparison, the reduction percentage is defined as follows:

Reduction percentage

= E�Var(μ̂m×2(S|�)) − E�bVar(μ̂m×2(S
b)|�b)

E�Var(μ̂m×2(S)|�)
· 100%. (7.1)



544 R. Wang et al.

Table 10: Variance Reduction Percentages on Simulation Data Sets.

Reduction Percentage (%)

Configuration m = 3 m = 5 m = 7 m = 9

SREG + lm + 1000 + 100 0.36 0.27 0.43 0.60
SREG + rid + 1000 + 100 0.37 0.22 0.43 0.59
SREG + lso + 1000 + 100 −0.04 0.10 0.30 0.66
SCLA + svm + 1000 + 20 0.23 0.35 0.36 0.62
SCLA + knn + 1000 + 20 0.15 0.55 0.91 0.80

Table 11: Comparison of Three Variance Estimators on Configurations SREG +
rid + n + 20.

m Variance n = 100 n = 200 n = 300 n = 400 n = 500

3 Var(μ̂m×2) 0.192125 0.030131 0.014093 0.008821 0.006376
3 V̂ar1(μ̂m×2) 0.151037 0.015067 0.007338 0.005044 0.003932
3 V̂ar2(μ̂m×2) 0.250211 0.027984 0.012346 0.007712 0.005587
3 V̂ar3(μ̂m×2) 0.349384 0.040901 0.017353 0.010380 0.007242
5 Var(μ̂m×2) 0.172204 0.027544 0.013121 0.008288 0.006042
5 V̂ar1(μ̂m×2) 0.153129 0.015071 0.007338 0.005040 0.003932
5 V̂ar2(μ̂m×2) 0.272423 0.030586 0.013356 0.008240 0.005922
5 V̂ar3(μ̂m×2) 0.332070 0.038343 0.016366 0.009840 0.006916
7 Var(μ̂m×2) 0.163635 0.026455 0.012683 0.008057 0.005902
7 V̂ar1(μ̂m×2) 0.152596 0.015064 0.007336 0.005040 0.003931
7 V̂ar2(μ̂m×2) 0.280363 0.031687 0.013779 0.008472 0.006063
7 V̂ar3(μ̂m×2) 0.322952 0.037228 0.015927 0.009616 0.006773

The reduction percentages for all simulation configurations are listed in
Table 10.

Tables 9 and 10 reveal the following:

1. E�Var(μ̂m×2(S)|�) > E�bVar(μ̂m×2(S
b)|�b) for all situations, that is,

the variance of the m × 2 CV estimator is larger than that of the m × 2
BCV estimator.

2. As m increases from 3 to 9, the reduction percentage appears
to increase as well. This condition means that as m increases,
the effectiveness of m × 2 BCV in the reduction of the variance
of the estimator of the generalization error becomes increasingly
evident.

7.5 Simulation Experiments for Question 4. Tables 11 and 12 compare
three variance estimators on simulation data sets.
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Table 12: Comparison of Three Variance Estimators on Configurations SCLA +
svm + n + 20.

m Variance n = 100 n = 200 n = 300 n = 400 n = 500

3 Var(μ̂m×2) 0.002662 0.001442 0.000960 0.000721 0.000558
3 V̂ar1(μ̂m×2) 0.001270 0.000646 0.000436 0.000333 0.000270
3 V̂ar2(μ̂m×2) 0.002908 0.001384 0.000898 0.000657 0.000516
3 V̂ar3(μ̂m×2) 0.004545 0.002122 0.001359 0.000981 0.000761
5 Var(μ̂m×2) 0.002337 0.001293 0.000867 0.000657 0.000509
5 V̂ar1(μ̂m×2) 0.001270 0.000645 0.000437 0.000332 0.000271
5 V̂ar2(μ̂m×2) 0.003235 0.001532 0.000990 0.000721 0.000565
5 V̂ar3(μ̂m×2) 0.004217 0.001975 0.001266 0.000916 0.000713
7 Var(μ̂m×2) 0.002195 0.001231 0.000828 0.000629 0.000488
7 V̂ar1(μ̂m×2) 0.001271 0.000645 0.000437 0.000332 0.000271
7 V̂ar2(μ̂m×2) 0.003375 0.001595 0.001029 0.000749 0.000586
7 V̂ar3(μ̂m×2) 0.004077 0.001912 0.001227 0.000888 0.000692

From these results, we know that:

• V̂ar1(μ̂m×2) underestimates the variance in almost all cases. Mean-
while, V̂ar3(μ̂m×2) is a conservative estimator of true variance.

• V̂ar2(μ̂m×2) is conservative in most cases. When m increases from 3 to
7, it is a conservative estimator for all cases. Thus, in practical appli-
cations, it is suitable to use V̂ar2(μ̂m×2) as the estimator of variance.

7.6 Results on Real-Life Data Sets. In this section, we compare the
variances between the m × 2 BCV estimator and the m × 2 CV estimator on
multiple real-life data sets. All of these data sets were obtained from the UC
Irvine machine learning repository (http://archive.ics.uci.edu.ml).

• The letter recognition data set (LETTER) is used to recognize a char-
acter based on an image.1 The data set consists of 16 predictors and 26
classes. The data set setting is the same as that in the work of Bengio
and Grandvalet (2004). Specifically, we combined the letters A to M as
the first class and the remaining letters as the other class. We treat it as
a binary-classification task, and then we employ the support vector
machine (svm) and k-nearest neighborhood (knn).

• The wine quality data set(WQ) is used to predict wine quality.2 Only
part of the data set about white wine is used in our experiment. It has
4898 samples and 11 predictors. The response variable is the quality

1Letter recognition data set: http://archive.ics.uci.edu/ml/datasets/Letter+Recogni
tion.

2Wine-quality data set: http://archive.ics.uci.edu/ml/datasets/Wine+Quality.
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grade of wine. We view it as a regression task and employ linear (lm),
ridge (rid), and lasso regressions (lso).

• The air quality data set (AQ) is about the air quality in Italy. The
response variable of the data set is absolute humidity.3 The date and
time tags of each record are removed, and the variable of the non-
methane hydrocarbon concentration (NMHC) is removed because
the majority of its values are missing. Furthermore, we remove all
records having missing values. The final data set has 6941 records
and 11 predictors. Linear (lm), ridge (rid), and lasso regressions (lso)
are used.

• The connect-four data set (CON) is about the connect-four game.4

This data set has 67,557 samples, 2 classes for the response variable,
and 42 predictors. We regard it as a classification task and use support
vector machine (svm) and k-nearest neighborhood (knn).

• The census income data set (ADULT) was extracted from a census
database.5 It has 32,561 samples and 14 predictors. After omitting
rows with missing values, the remaining data set still has 30,162 sam-
ples. The task on this data set predicts whether a person makes over
$50,000 annually. This task can be treated as a binary classification
problem. Support vector machine (svm) and k-nearest neighborhood
(knn) are employed as classifiers.

The other settings of variance simulation are the same as those of the
simulations on the SREG and SCLA data sets. Ten million replications are
used for each experiment, including replications of 10,000 data sets and
1,000 partitions. All variances of the m × 2 BCV and m × 2 CV estimators are
listed in Table 13. The corresponding reduction rates are given in Table 14.

From these results, we can obtain that the variance of the m × 2 BCV es-
timator is smaller than that of the m × 2 CV estimator for all configurations.
Furthermore, as m increases, the variances of the m × 2 BCV and m × 2 CV
estimators decrease and the reduction percentages increase for almost all
configurations.

8 Conclusion

We developed a new data partitioning scheme for cross validation called
block-regularized m × 2 cross validation (m × 2 BCV). In m × 2 BCV, the
differences between the number of overlapping samples and n/4 are con-
trolled into smaller than its expectation of random situation. We discussed
variance optimal property in all m × 2 BCV estimators. Furthermore, we

3Air quality data set:http://archive.ics.uci.edu/ml/datasets/Air+Quality.
4Connect-4 data set: http://archive.ics.uci.edu/ml/datasets/Connect-4.
5Census income data set:http://archive.ics.uci.edu/ml/datasets/Census+Income.



Blocked m × 2 Cross Validation 547

Table 13: Variance Comparison on Real-Life Data Sets.

Configuration Scale m = 3 m = 5 m = 7 m = 9

m × 2 BCV
LETTER + svm + 500 + 256 10−5 8.1657 4.8959 3.5017 2.7123
LETTER + knn + 500 + 256 10−4 1.0508 0.6271 0.4469 0.3465

WQ + lm + 100 + 11 10−2 1.1509 0.68899 0.48625 0.37031
WQ + rid + 100 + 11 10−2 1.4007 0.82894 0.55728 0.42205
WQ + lso + 100 + 11 10−3 3.6329 2.1599 1.5188 1.1654
AQ + lm + 200 + 11 10−7 7.4631 4.4451 3.1432 2.4231
AQ + rid + 200 + 11 10−8 3.7909 2.2534 1.5905 1.2153
AQ + lso + 200 + 11 10−7 8.2932 4.9378 3.4873 2.6908
CON + svm + 500 + 42 10−4 3.0035 1.6996 1.2739 0.99936
CON + knn + 500 + 42 10−4 1.4920 0.89203 0.63534 0.49354
ADULT + svm + 500 + 14 10−5 5.8201 3.5065 2.5294 1.9538
ADULT + knn + 500 + 14 10−5 7.7733 4.6526 3.3153 2.5719

m × 2 CV
LETTER + svm + 500 + 256 10−5 8.2011 4.9502 3.5278 2.7458
LETTER + knn + 500 + 256 10−4 1.0540 0.6339 0.4521 0.3518

WQ + lm + 100 + 11 10−2 1.1747 0.70407 0.49876 0.38629
WQ + rid + 100 + 11 10−2 1.4065 0.84562 0.60355 0.47136
WQ + lso + 100 + 11 10−3 3.6832 2.2152 1.5798 1.2307
AQ + lm + 200 + 11 10−7 7.5392 4.5222 3.2349 2.5162
AQ + rid + 200 + 11 10−8 3.8234 2.2979 1.6411 1.2772
AQ + lso + 200 + 11 10−7 8.3728 5.0326 3.5938 2.7991
CON + svm + 500 + 42 10−4 3.0443 1.8274 1.2922 1.0224
CON + knn + 500 + 42 10−4 1.5024 0.90046 0.64282 0.50065
ADULT + svm + 500 + 14 10−5 5.8495 3.6059 2.5599 1.9999
ADULT + knn + 500 + 14 10−5 7.8270 4.7058 3.3588 2.6101

Table 14: Variance Reduction Percentages (%) on Real-Life Data Sets.

Reduction Percentage

Configuration m = 3 m = 5 m = 7 m = 9

LETTER + svm + 500 + 256 0.43 1.10 0.74 1.22
LETTER + knn + 500 + 256 0.31 1.07 1.14 1.50

WQ + lm + 100 + 11 2.03 2.14 2.51 4.14
WQ + rid + 100 + 11 0.41 1.97 7.67 10.46
WQ + lso + 100 + 11 1.36 2.49 3.86 5.30
AQ + lm + 200 + 11 1.01 1.70 2.83 3.70
AQ + rid + 200 + 11 0.85 1.94 3.08 4.85
AQ + lso + 200 + 11 0.95 1.88 2.96 3.87
CON + svm + 500 + 42 1.34 6.99 1.41 2.25
CON + knn + 500 + 42 0.69 0.93 1.16 1.42
ADULT + svm + 500 + 14 0.50 2.76 1.19 2.30
ADULT + knn + 500 + 14 0.69 1.13 1.29 1.46
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provided a nested construction algorithm of m × 2 BCV based on a two-
level orthogonal array. Finally, a conservative estimator of the variance of
estimator of the generalization error is recommended.

In the case of non–indentical and independently distributed (i.i.d.) sam-
ples such as text data, the idea of the BCV framework proposed in this
letter remains applicable, but the method should be extended. A good par-
titioning not only controls the percentage of overlapping parts between any
two text training (test) sets in a partition scheme but also guarantees a small
difference in the training and test sets. For text data in natural language pro-
cessing areas, data partitioning could be implemented only in sentences,
paragraphs, or documents in most specific tasks. This limitation may easily
result in bad partitioning of text data, which can seriously affect the variance
of the cross-validated estimator of the generalization error. Thus, to pursue
good partitioning, additional measures of the differences of text data blocks
should be introduced, such as measures of differences of token distribution,
word frequency distribution, tag distribution, and sentence length distribu-
tion. Furthermore, the measures should be converted to the corresponding
regularized conditions, and the conditions should be properly and care-
fully considered in the extension of the current BCV framework to further
minimize the variance of the cross-validated estimator of the generaliza-
tion error. Further in-depth studies can focus on how these measures can
be converted to regularized conditions and introduced into the objective
function of variance minimization and how the corresponding partitions
can be constructed. These topics are included in our future research plan.

Appendix: Proof of ω + γ > 2τ

In this appendix, we provide our proofs of ω + γ > 2τ for mean regression
and multivariate regression with squared loss. Let S1 = (I(t)

1 , I(v)

1 ) and S2 =
(I(t)

2 , I(v)

2 ) be two partitions of I = {1, . . . , n}, and the corresponding pairs of
training and test sets are (D(t)

1 , D(v)

1 ) and (D(t)
2 , D(v)

2 ), respectively. Moreover,
we simplify our loss function L(A(D(t)), z j) as L(ŷI(t), j, y j), where y j is the
response value of test sample z j and ŷI(t), j is the prediction value of y j based
on machine learning algorithm A and training set D(t) = {zi|i ∈ I(t)}. A data
set can be divided into the following parts:

• A = {a|a ∈ I(t)
1 ∩ I(t)

2 } is the index set of the common samples of train-
ing sets D(t)

1 and D(t)
2 .

• B = {b|b ∈ I(t)
1 \A} is the index set of the samples occurring only in

training set D(t)
1 , not in training set D(t)

2 .
• C = {c|c ∈ I(t)

2 \A} is the index set of the samples contained only in
training set D(t)

2 , not in training set D(t)
1 .
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• D = {d|d ∈ I(v)

1 ∩ I(v)

2 } is the index set of the samples that are not con-
tained in training sets D(t)

1 and D(t)
2 .

Under squared loss, ω, γ , and τ are expressed as follows:

• ω = Cov((ŷA∪B,d − yd)2, (ŷA∪C,d′ − yd′ )2), ∀d, d′ ∈ D such that d �= d′.
• γ = Cov((ŷA∪B,c − yc)

2, (ŷA∪C,b − yb)
2), ∀b ∈ B, c ∈ C.

• τ = Cov((ŷA∪B,c − yc)
2, (ŷA∪C,d − yd)2), ∀c ∈ C, d ∈ D, or τ =

Cov((ŷA∪B,d′ − yd′ )2, (ŷA∪C,b − yb)
2), ∀b ∈ B, d′ ∈ D.

The following sections are our proofs for the two regression situations.

A.1 Proof of ω + γ > 2τ for Mean Regression. For mean regression,
the algorithm uses only the n of response values y1, y2, . . . , yn in a data set.
These response values are identically and independently drawn from an
unknown population. We assume the population mean and variance are μ

and ψ2, respectively. Moreover, mean regression uses the sample mean of
the response values in the training set as a prediction value of a test sample:
ŷA∪B,d = ȳA∪B, in which ȳA∪B = 2

∑
i∈A∪B yi/n.

The covariances ω, γ , and τ can be decomposed directly as follows:

ω = Cov(ȳ2
A∪B, ȳ2

A∪C) − 2Cov(ȳ2
A∪B, 2ȳA∪Cyd′ ) + 2Cov(ȳ2

A∪B, y2
d′ )

+ Cov(2ȳA∪Byd, 2ȳA∪Cyd′ ) − 2Cov(2ȳA∪Byd, y2
d′ ) + Cov(y2

d, y2
d′ ),

(A.1)

γ = Cov(ȳ2
A∪B, ȳ2

A∪C) − 2Cov(ȳ2
A∪B, ȳA∪Cyb) − 2Cov(ȳ2

A∪C, ȳA∪Byc)

+ Cov(ȳ2
A∪B, y2

b ) + Cov(ȳ2
A∪C, y2

c ) + 4Cov(ȳA∪Byc, ȳA∪Cyb)

− 2Cov(ȳA∪Byc, y2
b ) − 2Cov(ȳA∪Cyb, y2

c ) + Cov(y2
b, y2

c ), (A.2)

τ = Cov(ȳ2
A∪B, ȳ2

A∪C) − 2Cov(ȳ2
A∪B, ȳA∪Cyb) − Cov(ȳ2

A∪C, 2ȳA∪Byd)

+ Cov(ȳ2
A∪B, y2

b ) + Cov(ȳ2
A∪C, y2

d) + 4Cov(ȳA∪Byd, ȳA∪Cyb)

− 2Cov(ȳA∪Byd, y2
b ) − 2Cov(ȳA∪Cyb, y2

d) + Cov(y2
b, y2

d). (A.3)

Therefore, we obtain the following:

ω + γ − 2τ

= 4Cov(ȳA∪Byd, ȳA∪Cyd′)+4Cov(ȳA∪Byc, ȳA∪Cyb)−8Cov(ȳA∪Byd, ȳA∪Cyb)

= 16
n2

[
Cov

(
yc

∑
b∈B

yb, yb

∑
c∈C

yc

)
− 2Cov

(
yd

∑
b∈B

yb, yb

∑
c∈C

yc

)]
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= 16
n2

[∑
b′∈B

∑
c′∈C

Cov(ycyb′ , ybyc′ ) − 2
∑
b′∈B

∑
c′∈C

Cov(ydyb′ , ybyc)

]
.

If b′ �= b and c′ �= c, equations Cov(ycyb′ , ybyc′ ) = 0 and Cov(ydyb′ , ybyc′ ) =
0 hold. Therefore, we obtain the following:

ω + γ − 2τ

= 16
n2

[∑
c′∈C

Cov(ycyb, ybyc′ ) +
∑
b′∈B

Cov(ycyb′ , ybyc) − Var(ybyc)

− 2
∑
c′∈C

Cov(ydyb, ybyc′ )

]

= 16
n2

[
2
∑
c′∈C

Cov(ycyb, ybyc′ ) − 2
∑
c′∈C

Cov(ydyb, ybyc′ ) − Var(ybyc)

]

= 16
n2 (var(ybyc) − 2Cov(ydyb, ybyc)), (A.4)

where
∑

c′∈C Cov(ycyb, ybyc′ ) = ∑
b′∈B Cov(ycyb′ , ybyc) holds.

Given that Eyi = μ and Var(yi) = ψ2, Var(ybyc) = ψ4 + 2μ2ψ2 and
Cov(ydyb, ybyc) = μ2ψ2 can be known easily. Finally, we can obtain

ω + γ − 2τ = 16
n2 ψ4 > 0. (A.5)

This proof supports that in the mean regression situation, the condition
ω + γ > 2τ holds.

A.2 Proof of ω + γ > 2τ for Multivariate Linear Regression. For mul-
tivariate linear regression, we introduce an important expansion of the co-
variance of squared loss functions for the regression model. This expansion
was developed by Markatou et al. (2005) and is expressed as follows.

Assume that our data set is (xi, yi)
n
i=1 with n i.i.d. samples. yi is the

response variable, and xi is our predictor vector consisting of p predictors,
that is, xi = (xi1, . . . , xip)

�. Let β = (β1, . . . , βp)
� be a coefficient vector. A

multivariate regression model has the following form:

Y = Xβ + ε, (A.6)
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where Y = (y1, . . . , yn)� is the response vector, X =

⎛⎜⎝ x�
1
...

x�
n

⎞⎟⎠ is the design

matrix, and ε = (ε1, . . . , εn) is the noise vector, in which ∀i, Eεi = 0, Var(εi) =
ψ2; each pair of εi and ε j in ε is i.i.d. If xi in X is random, the multivariate
regression model (see equation A.6) is usually analyzed by conditioning on
X. Let S = (I(t), I(v)) be a partition, and X I(t) is a design matrix composed
by {xi|i ∈ I(t)}. Let ŷI(t),i be the prediction value of yi using the training set
on S = (I(t), I(v)). Thereafter, the covariance of the two squared losses with
regard to the two partitions S1 and S2, as well as the two test samples of
(xi, yi) and (xi′ , yi′ ), can be rewritten as

Cov((ŷI(t)
1 ,i − yi)

2, (ŷI(t)
2 ,i′ − yi′ )

2|X )

= 2ψ4tr
{
(xix

T
i )H−1

I(t)
1

HI(t)
1 ∩I(t)

2
H−1

I(t)
2

(xi′ x
T
i′ )H

−1
I(t)
1

HI(t)
1 ∩I(t)

2
H−1

I(t)
2

}
, (A.7)

where HI(t) = X�
I(t) X I(t) , and i �= i′.

Concerning the multivariate regression model given in equation A.6, we
further assume that each sample in design matrix X is independently drawn
from a population with mean ν and covariance �, in which ν = (ν1, . . . , νp)

is the population mean vector and � is a p × p of the population covariance
matrix.

According to equation A.7, we obtain

• ω = 2ψ4E[x�
d H−1

A∪BHAH−1
A∪C(xd′ x�

d′ )H−1
A∪BHAH−1

A∪Cxd],
• γ = 2ψ4E[x�

b H−1
A∪BHAH−1

A∪C(xcx
�
c )H−1

A∪BHAH−1
A∪Cxb],

• τ = 2ψ4E[x�
b H−1

A∪BHAH−1
A∪C(xd′ x�

d′ )H−1
A∪BHAH−1

A∪Cxb]
or τ = 2ψ4E[x�

d H−1
A∪BHAH−1

A∪C(xcx
�
c )H−1

A∪BHAH−1
A∪Cxd],

in which the expectations are taken on the entire design matrix X .
Therefore,

ω + γ − 2τ = 2ψ4tr{E[(xcx
�
c − xd′ x�

d′ )H−1
A∪BHAH−1

A∪C

· (xbx�
b − xdx�

d )H−1
A∪BHAH−1

A∪C]}. (A.8)

According to HA = X�
AXA, we obtain

ω + γ − 2τ = 2ψ4tr{E[XAH−1
A∪C(xcx

�
c − xd′ x�

d′ )H−1
A∪BX�

A

· XAH−1
A∪C(xbx�

b − xdx�
d )H−1

A∪BX�
A]}. (A.9)

The design matrix XA is composed of {xa|a ∈ A} and X�
AXA = ∑

a′∈A xa′ x�
a′ .

Given that the trace function of a matrix is the sum of all diagonal elements,
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we obtain

tr{E[XAH−1
A∪C(xcx

�
c − xd′ x�

d′ )H−1
A∪BX�

AXAH−1
A∪C(xbx�

b − xdx�
d )H−1

A∪BX�
A]}

=
∑
a∈A

∑
a′∈A

E[x�
a H−1

A∪C(xcx
�
c − xd′ x�

d′ )H−1
A∪Bxa′ x�

a′ H−1
A∪C(xbx�

b − xdx�
d )H−1

A∪Bxa].

(A.10)

Given that x�
a′ H−1

A∪C(xbx�
b − xdx�

d )H−1
A∪Bxa is a random number, we obtain

x�
a′ H−1

A∪C(xbx�
b − xdx�

d )H−1
A∪Bxa = x�

a H−1
A∪B(xbx�

b − xdx�
d )H−1

A∪Cxa′ . (A.11)

Thus, we obtain the following:

ω + γ − 2τ =
∑
a∈A

∑
a′∈A

E[x�
a H−1

A∪C(xcx
�
c − xd′ x�

d′ )H−1
A∪Bxa′

· x�
a H−1

A∪B(xbx�
b − xdx�

d )H−1
A∪Cxa′ ]

=
∑
a∈A

∑
a′∈A

E[tr{H−1
A∪Cxa′ x�

a H−1
A∪C(xcx

�
c − xd′ x�

d′ )H−1
A∪Bxa′

· x�
a H−1

A∪B(xbx�
b − xdx�

d )}]
=
∑
a∈A

∑
a′∈A

tr{Exa,xa′
[E(H−1

A∪Cxa′ x�
a H−1

A∪C(xcx
�
c − xd′ x�

d′ )|xa, xa′ )

· E(H−1
A∪Bxa′ x�

a H−1
A∪B(xbx�

b − xdx�
d )|xa, xa′ )]}. (A.12)

For any a, a′ ∈ A by conditioning on xa, xa′ , we have

E(H−1
A∪Cxa′ x�

a H−1
A∪C(xcx

�
c − xd′ x�

d′ )|xa, xa′ )]

= E(H−1
A∪Bxa′ x�

a H−1
A∪B(xbx�

b − xdx�
d )|xa, xa′ )]. (A.13)

Thus, we obtain the following:

ω + γ − 2τ =
∑
a∈A

∑
a′∈A

tr{Exa,xa′
[E2(H−1

A∪Cxa′ x�
a H−1

A∪C

· (xcx
�
c − xd′ x�

d′ )|xa, xa′ )]}
> 0. (A.14)

Therefore, the condition ω + γ > 2τ holds for the multivariate regression
model.



Blocked m × 2 Cross Validation 553

Acknowledgments

We thank the anonymous referee for helpful comments on an earlier ver-
sion of this letter. This work was supported by the National Social Science
Fund of China (NSSFC-16BTJ034), the National Natural Science Fund of
China (NNSFC-61503228), the Natural Science Fund of Shanxi province
(201601D011046), and the Special Program for Applied Research on Super
Computation of the NSFC-Guangdong Joint Fund (the second phase).

References

Alpaydin, E. (1999). Combined 5 × 2 cv F test for comparing supervised classification
learning algorithms. Neural Computation, 11(8), 1885–1892.

Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model
selection. Statistics Surveys, 4, 40–79.

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold
cross-validation. Journal of Machine Learning Research, 5, 1089–1105.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised clas-
sification learning algorithms. Neural Computation, 10(7), 1895–1923.

Fan, J., Guo, S., & Hao, N. (2012). Variance estimation using refitted cross-validation
in ultra–high dimensional regression. Journal of the Royal Statistical Society: Series
B, 74(1), 37–65.

Fan, J., & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature
space. Journal of the Royal Statistical Society: Series B, 70(5), 849–911.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning,
vol. 1. Berlin: Springer.

Lichman, M. (2013). UCI Machine Learning Repository. Irvine: University of Cal-
ifornia, School of Information and Computer Science. http://archive.ics.uci
.edu/ml.

Markatou, M., Tian, H., Biswas, S., & Hripcsak, G. (2005). Analysis of variance of
cross-validation estimators of the generalization error. Journal of Machine Learning
Research, 6, 1127–1168.

McCarthy, P. J. (1976). The use of balanced half-sample replication in cross-
validation studies. Journal of the American Statistical Association, 71(355), 596–
604.

Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine
Learning, 52(3), 239–281.

Nason, G. (1996). Wavelet shrinkage using cross-validation. Journal of the Royal Sta-
tistical Society, Series B, 58(6), 463–479.

Stanišić, P., & Tomović, S. (2012). Frequent itemset mining using two-fold cross-
validation model. In Mediterranean Conference on Embedded Computing (pp. 229–
232). Piscataway, NJ: IEEE.

Tibshirani, R. J., & Tibshirani, R. (2009). A bias correction for the minimum error rate
in cross-validation. Annals of Applied Statistics, 3(2), 822–829.

Wang, Y., Li, J., & Li, Y. (2015). Measure for data partitioning in m × 2 cross-validation.
Pattern Recognition Letters, 65, 211–217.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


554 R. Wang et al.

Wang, Y., Wang, R., Jia, H., & Li, J. (2014). Blocked 3 × 2 cross-validated t-test for com-
paring supervised classification learning algorithms. Neural Computation, 26(1),
208–235.

Wu, C. J., & Hamada, M. S. (2011). Experiments: Planning, analysis, and optimization.
Hoboken, NJ: Wiley.

Yang, X., Wang, Y., Wang, R., & Li, J. (2014). Variance of estimator of the prediction
error based on blocked 3 × 2 cross-validation. Chinese Journal of Applied Probability
and Statistics, 30(4), 372–380.

Yildiz, O. T. (2013). Omnivariate rule induction using a novel pairwise statistical test.
IEEE Transactions on Knowledge and Data Engineering, 25(9), 2105–2118.

Received March 25, 2016; accepted October 7, 2016.


