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a b s t r a c t

An m × 2 cross-validation based on m half–half partitions is widely used in machine learning. However, the

cross-validation performance often relies on the quality of the data partitioning. Poor data partitioning may

cause poor inference results, such as a large variance and large Type I and II errors of the corresponding test.

To evaluate the quality of the data partitioning, we propose a statistic based on the difference between the

observed and expected numbers of overlapped samples of two training sets in an m × 2 cross-validation.

The expectation and variance of the proposed statistic are also given. Furthermore, by studying the quantile of

the distribution of the statistic, we find that the occurrence of poor data partitioning is not a small probability

event. Thus, data partitioning should be predesigned before conducting m × 2 cross-validation experiments

in machine learning such that the number of overlapped samples observed is equal or as close as possible to

the number expected.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

In machine learning research, a cross-validation method is com-

only used in model assessment and selection, as well as in

he estimation of generalization error. To date, many versions of

ross-validation have been developed, including Repeated Learning-

esting(RLT), standard K-fold cross-validation, Monte-carlo cross-

alidation, 5 × 2 cross-validation and blocked 3 × 2 cross-validation

Hastie et al. [7]; Nadeau and Bengio [9]; Bengio and Grandvalet [3];

arkatou et al. [8]; Arlot and Celisse [2]; Dietterich [4]; Alpaydin [1];

ildiz [12]; Wang et al. [10]).

In particular, standard 2-fold cross-validation has received con-

iderable attention because it exhibits some good properties, such as

low computational cost, consistency in selection used to model se-

ection for the classification situation of Yang [11], and use in variance

stimation in the ultra-high dimensional linear regression model of

an [5]. A 2-fold cross-validation splits the data into two equal-sized

ata sets, i.e., training and test sets, and each 2-fold cross-validation

orresponds to one half–half partition. In practice, to be able to elimi-

ate the effect by chance (e.g., variance due to changes in the training

et), typically, one does 2-fold cross-validation a number of times. A

ross-validation based on m replications of 2-fold cross-validation is

alled an m × 2 cross-validation.
✩ This paper has been recommended for acceptance by Egon L. van den Broek.
∗ Corresponding author. Tel.: +86- 351 -701 -1017; fax: +86- 351 -701 -1017.

E-mail addresses: wangyu@sxu.edu.cn (Y. Wang), lijh@sxu.edu.cn (J. Li),
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An m × 2 cross-validation based on m data partitions is widely

sed in machine learning. Dietterich [4], Alpaydin [1] and Yildiz [12]

emonstrated the superiority of a 5 × 2 cross-validation when com-

aring algorithms for m = 5. Hafidi and Mkhadri [6] provided a large

ample property of an m × 2 cross-validation (called Repeated Half

ampling in their paper) in the model selection of linear regression.

nfortunately, the performance of cross-validation often relies on the

uality of the data partitioning. However, the data partitioning can-

ot be directly evaluated. It should be noted that different partitions

enerate different training and test sets in an m × 2 cross-validation,

nd that training sets (test sets) from any two independent parti-

ions contain common samples regardless of how the data are split.

he number of common samples in training sets (test sets) from two

ata partitions is defined as the number of overlapped samples. In

act, Markatou et al. [8] theoretically proved that the number of over-

apped samples from any two training sets follows a hypergeometric

istribution, and that the mathematical expectation is n/4 (where n

s the sample size). The following two examples illustrate the impact

f the number of overlapped samples on the performance of an m ×
cross-validation.

xample 1. At the sample size n = 40, we predict the response

ariable Y with Y ∈ {0, 1} based on the predictive variables X1, X2,

3. For 20 observations with Y = 1, we generate three independent

andom variables X1, X2, X3, all standard normal; for the remaining

0 observations with Y = 0 we generate the three predictors also

ndependent, but with N(0.4, 1), N(0.3, 1) and N(0, 1) distributions,

espectively. Then X3 is not useful for classifying Y. The learning algo-

ithm is classification tree. Here, we will examine the impact of the

http://dx.doi.org/10.1016/j.patrec.2015.08.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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Fig. 1. Box plots for Example 1, where Case I and Case II refer to the cases of the differ-

ence of maximum number of overlapped samples and n/4 being 2 and 0, respectively.
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Fig. 2. Curve of covariance vs. number of overlapped samples.

Table 1

Probabilities of Type I and II errors for Example 2, where 90 and 59 refer to the maxi-

mum numbers of overlapped samples in a 5 × 2 cross-validation.

n 200 200

μ0 (0,0) (0,0)

μ1 (1,1) (1,1)

�0 I2 I2

�1
1
6

I2
1
2

I2

Probability of Type I error Probability of Type II error

F5 × 2CV(90) 0.070 0.086

F5 × 2CV(59) 0.055 0.061

F5×2CV ( n
4

= 50) 0.037 0.050
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Fig. 3. The change in EZ and DZ for n from 4 to 1024 .
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number of overlapped samples on the variance of the generalization

error estimation in an m × 2 cross-validation at m = 3.

Fig. 1 shows the results. The variances of a 3 × 2 cross-validation

with the number of overlapped samples equal to n/4 (Case II) in 100

replications are all smaller than that of a 3 × 2 cross-validation where

the difference of the maximum number of overlapped samples and

n/4 is 2 (Case I). This implies that a large variance may be caused

by data partitioning when the number of overlapped samples is not

equal to n/4. Furthermore, Wang et al. [10] had used a simulation

to show that a 3 × 2 cross-validation with the expected number of

overlapped samples of n/4 had a minimum variance. See the example

shown in Fig. 2 of the change of covariance with the number of over-

lapped samples in any two replications of 2-fold cross-validation for

n = 512 and support vector machine classifier.

Example 2 shows the impact of the number of overlapped samples

on Type I and II errors of the corresponding test based on a 5 × 2

cross-validation and a similar conclusion is obtained.

Note: It is hard to construct an m × 2 cross-validation with the

same number of overlapped samples (except when the number of

overlapped samples is n/4). So, we perform the experiments by con-

trolling the maximum number of overlapped samples in m replica-

tions of a 2-fold cross-validation.
xample 2. By considering the problem of comparing two algo-

ithms: regression tree and ordinary least squares linear regression,

e thus have (X, Y), with Prob(Y = 1) = Prob(Y = 0) = 1
2 , X|Y = 0 ∼

(μ0,�0), X|Y = 1 ∼ N(μ1,�1). X is a binary input variable. Y is a

utput variable. The sample size is n = 200. Here we examine the im-

act of the maximum number of overlapped samples on the perfor-

ance of a 5 × 2 cross-validated F-test given by Alpaydin [1].

The results of Table 1 show that the probabilities of Type I and

I errors of a 5 × 2 cross-validated F-test gradually increase corre-

pond to an increase in the maximum number of overlapped samples.

he probabilities of Type I and II errors of a 5 × 2 cross-validated F-

est, where the maximum number of overlapped samples are 59 and

0 respectively, are higher than the significance level of 0.05. How-

ver, from the conclusion derived by Nadeau and Bengio [9], we can

ee that these two classification learning algorithms have no statisti-

al significant differences with a setup of n = 200,μ0 = (0, 0),μ1 =
1, 1),�0 =I2,�1 = 1

6 I2, but do have significant differences with a

etup of n = 200,μ0 = (0, 0),μ1 = (1, 1),�0 =I2,�1 = 1
2 I2. For a 5

2 cross-validation with the number of overlapped samples of

/4 = 50, the probabilities are only 0.037 and 0.050. These findings

ll indicate that the poor data partitioning that occurs when the num-

er of overlapped samples is not equal to n/4 results in a poor perfor-

ance of an m × 2 cross-validation.

However, how can the quality of the data partitioning be mea-

ured? Does such poor partitioning always occur when the data is

andomly split? Thus, providing a measure for data partitioning in

n m × 2 cross-validation is important. In addition, such a measure

hould be constructed based on the number of overlapped samples
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Fig. 4. Quantile values for different sample sizes.

Fig. 5. Quantile values for different sample sizes and an 3 × 2 cross validation.
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(
tion of z for z > 0.
f the training sets in an m × 2 cross-validation. As such, we propose

statistic based on the difference between the number of overlapped

amples in the training sets resulting from any two data partitions

f an m × 2 cross-validation and its mathematical expectation. We

lso show that the occurrence of poor data partitioning is not a small

robability event.

The remainder of this study is organized as follows. Section 2 de-

cribes the statistic used for measuring data partitioning and its sta-

istical properties. Section 3 demonstrates that the occurrence of poor

ata partition is not a small probability event. Section 4 concludes the

tudy.

. Statistic used for measuring data partitioning

.1. Statistic and its distribution

According to Markatou et al. [8], in an m × 2 cross-validation the

umber of overlapped samples from any two training sets follows a

ypergeometric distribution . This random variable is denoted as X.

hus, a statistic used for measuring the data partitioning based on X

nd its mathematical expectation can be defined as:

= |X − EX|, (1)
here, EX = n′, n = 4n′ is sample size.

Then, we consider the distribution of Z. First, from X following hy-

ergeometric distribution h(2n′, n, 2n′), we have

(X = k) = (2n′
k )( 2n′

2n′−k)

( n
2n′)

, k = 0, 1, 2, . . . , 2n′. (2)

Then, P(X = k) = P(X = 2n′ − k) is obtained from the symmetry

roperties of the distribution of X. Thus, in the case of z = 0

(Z = 0) = P(|X − EX| = 0) = P(|X − 2n′| = 0)

= P(X = n′) = (2n′
n′ )

2

( n
2n′)

. (3)

In the case of z �= 0, z = 1, 2, . . . , n′,

(Z = z) = P(|X − n′| = z) = 2
( 2n′

n′−z)(
2n′

n′+z)

(n
n′)

= 2
( 2n′

n′−z)
2

( n
2n′)

. (4)

emark 1. From the combination equation ( 2n′
n′−z) = ( 2n′

n′−z−1) +
2n′−1

n′−z−1), we have ( 2n′
n′−z) > ( 2n′

n′−z−1), i.e., P(Z = z) is a decreasing func-
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Fig. 6. Quantile values for different sample sizes and an 7 × 2 cross validation.

Fig. 7. Quantile values for different sample sizes and an 11 × 2 cross validation.

Table 2

The numbers of Zmax = 0, 1, . . . , 14 in 100 replications of 3 × 2, 7 × 2, and 11 × 2 cross-validations for n = 200.

Zmax=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 × 2 cross-validation 9 16 15 13 19 12 10 4 0 2 0 0 0 0 0

7 × 2 cross-validation 0 0 0 5 5 19 27 19 13 8 3 1 0 0 0

11 × 2 cross-validation 0 0 0 0 0 0 10 26 31 19 7 3 3 0 1

Table 3

The numbers of Zmax = 0, 1, . . . , 25 in 100 replications of 3 × 2, 7 × 2, and 11 × 2 cross-validations for n = 600.

Zmax=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 × 2 cross-validation 4 9 14 13 5 10 8 9 10 5 3 0 2 2 2

7 × 2 cross-validation 0 0 0 0 0 0 2 4 11 14 6 13 12 13 7

11 × 2 cross-validation 0 0 0 0 0 0 0 0 0 1 5 8 12 10 18

Zmax=15 16 17 18 19 20 21 22 23 24 25

3 × 2 cross-validation 2 1 0 0 0 1 0 0 0 0 0

7 × 2 cross-validation 5 5 4 1 2 1 0 0 0 0 0

11 × 2 cross-validation 13 14 8 5 3 2 0 0 0 0 1
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Table 4

The numbers of Zmax = 0, 1, . . . , 28 in 100 replications of 3 × 2, 7 × 2, and 11 × 2 cross-validations for n = 1000.

Zmax=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 × 2 cross-validation 1 5 8 9 7 9 12 8 6 5 4 3 6 4 2

7 × 2 cross-validation 0 0 0 0 0 0 0 1 1 7 10 9 6 12 7

11 × 2 cross-validation 0 0 0 0 0 0 0 0 0 0 0 0 0 10 5

Zmax=15 16 17 18 19 20 21 22 23 24 25 26 27 28

3 × 2 cross-validation 2 3 1 2 0 1 0 0 0 0 0 0 0 0

7 × 2 cross-validation 10 6 4 9 7 1 1 3 2 0 1 1 0 2

11 × 2 cross-validation 12 8 14 6 13 11 7 6 2 2 3 0 1 0
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Table 5

Table corresponding to Graph 4, where k(P > 0.2) and k(P > 0.1) refer to the quantile

values for the probabilities P(Z > k) > 0.2 and P(Z > k) > 0.1, respectively.

Sample size (n) k(P > 0.2) k(P > 0.1) Sample size (n) k(P > 0.2) k(P > 0.1)

40–60 1 2 412–424 6 7

64–72 2 2 428–532 6 8

76–116 2 3 536–548 6 9

120 3 3 552–652 7 9

124–176 3 4 656–700 7 10

180–196 3 5 704–780 8 10

200–248 4 5 784–876 8 11

252–292 4 6 880–924 9 11

296–332 5 6 928–1024 9 12

336–408 5 7

Table 6

Table corresponding to Graph 5.

Sample size (n) k(P > 0.2) k(P > 0.1) Sample size (n) k(P > 0.2) k(P > 0.1)

40–44 2 2 360–392 8 9

48–60 2 3 396–444 8 10

64–72 3 3 448–472 9 10

76–100 3 4 476–544 9 11

104–108 4 4 548–556 10 11

112–148 4 5 560–652 10 12

152–200 5 6 656–752 11 13

204–208 5 7 756–768 11 14

212–256 6 7 772–860 12 14

260–276 6 8 864–896 12 15

280–320 7 8 900–972 13 15

324–356 7 9 976–1024 13 16

w

R

s

n

u

a

t

l

s

q

3

o

w

b

.2. Mathematical expectation and variance of the statistic

An mathematical expectation and variance are very important nu-

erical characteristics of a statistic. A expectation reflects the extent

f the average difference between the observed and expected num-

ers of overlapped samples. This characteristic is of great concern by

esearchers in terms of the statistic’s practical application. In addi-

ion to a mathematical expectation, we are also concerned with the

ariance of the statistic because it reflects the fluctuating range of

he statistic’s values. To further understand the proposed statistic, we

iscuss its expectation and variance.

roposition 1. The expectation and variance of statistic Z can be ex-

ressed as Eqs. (5)

Z = n2

4(n − 1)

(2n′−1
n′ )(2n′−1

n′−1 )

( n−2
2n′−1)

+ n(n − 2)

8(n − 1)

(2n′−1
n′−1 )

2

( n−2
2n′−2)

− n

4

(2n′
n′ )

2

( n
2n′)

(5)

and (6)

DZ = n2

16(n−1)
−

(
n2

4(n−1)

(
2n′−1

n′ )(
2n′−1
n′−1 )

(
n−2

2n′−1)
+ n(n−2)

8(n−1)

(
2n′−1
n′−1 )

2

(
n−2

2n′−2)
− n

4

(2n′
n′ )

2

( n
2n′)

)2

(6)

where n′ = n/4.

roof. First, from Eqs. (3) and (4), the expectation of Z can be written

s

Z =
n′∑

k=0

|k − n′|P(X = k) +
2n′∑

k=n′+1

|k − n′|P(X = k)

= n′ − n′P(X = n′) − 2

n′−1∑
k=1

k
(2n′

k )( 2n′
2n′−k)

( n
2n′)

.

nd

n′−1∑
k=1

k
(2n′

k )( 2n′
2n′−k)

( n
2n′)

= n

4

n′−2∑
k=0

(2n′−1
k )( 2n′

2n′−k−1)

( n−1
2n′−1)

= n2

8(n − 1)

[
1

2
− (2n′−1

n′ )(2n′−1
n′−1 )

( n−2
2n′−1)

]

+ n(n − 2)

16(n − 1)

[
1 − (2n′−1

n′−1 )(2n′−1
n′−1 )

( n−2
2n′−2)

]
.

This imply that

Z = n2

4(n − 1)

(2n′−1
n′ )(2n′−1

n′−1 )

( n−2
2n′−1)

+ n(n − 2)

8(n − 1)

(2n′−1
n′−1 )

2

( n−2
2n′−2)

− n

4

(2n′
n′ )

2

( n
2n′)

.

Second, the variance of Z has the following form:

Z = E(Z2) − (EZ)2

= n2

16(n − 1)
 w
−
(

n2

4(n − 1)

(2n′−1
n′ )(2n′−1

n′−1 )

( n−2
2n′−1)

+ n(n − 2)

8(n − 1)

(2n′−1
n′−1 )

2

( n−2
2n′−2)

− n

4

(2n′
n′ )

2

( n
2n′)

)2

,

here

E(Z2) =
2n′∑
k=0

(k − n′)2P(X = k) = n(n−2)2

16(n−1)
− n2

16
+ n

4
= n2

16(n−1)
.

�

emark 2. To clarify the change in the expectation and variance of

tatistic Z with varying sample sizes n, we examined their values for

from 4 to 1024. Fig. 3 indicates that the values of EZ and DZ all grad-

ally increase with an increase in sample capacity and that the vari-

nce changes more quickly. This implies that the difference between

he observed and expected numbers of overlapped samples becomes

arge and that the stability deteriorates with an increase in sample

izes n. This finding further shows the importance of measuring the

uality of the data partitioning.

. Quantile value of Z in which a small probability event does not

ccur

From Wang et al. [10] and Examples 1 and 2 described in Section 1,

e can see that the performance of an m × 2 cross-validation

ased on poor data partitioning with a large Z deteriorates. Next,

e show that the occurrence of poor data partitioning is not a small
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Table 7

Table corresponding to Graph 6.

Sample size (n) k(P > 0.2) k(P > 0.1) Sample size (n) k(P > 0.2) k(P > 0.1)

40–48 3 3 384–428 12 13

52–60 4 4 432–444 12 14

64–72 4 5 448–488 13 14

76–84 5 5 492–512 13 15

88–104 5 6 516–552 14 15

108–112 6 6 556–588 14 16

116–136 6 7 592–620 15 16

140–144 7 7 624–664 15 17

148–176 7 8 668–696 16 17

180–184 8 8 700–748 16 18

188–220 8 9 752–772 17 18

224 9 9 776–836 17 19

228–268 9 10 840–852 18 19

272–316 10 11 856–928 18 20

320–324 10 12 932–936 19 20

328–368 11 12 940–1024 19 21

372–380 11 13

Table 8

Table corresponding to Graph 7.

Sample size(n) k(P > 0.2) k(P > 0.1) Sample size (n) k(P > 0.2) k(P > 0.1)

40 3 4 356–400 13 14

44–48 4 4 404–408 13 15

52–56 4 5 412–452 14 15

60–68 5 5 456–464 14 16

72–80 5 6 468–508 15 16

84–92 6 6 512–528 15 17

96–108 6 7 532–568 16 17

112–120 7 7 572–592 16 18

124–140 7 8 596–632 17 18

144–148 8 8 636–664 17 19

152–172 8 9 668–696 18 19

176–184 9 9 700–736 18 20

188–212 9 10 740–768 19 20

216–220 10 10 772–812 19 21

224-256 10 11 816–840 20 21

260 11 11 844–896 20 22

264–300 11 12 900–916 21 22

304 12 12 920–980 21 23

308–348 12 13 984–996 22 23

352 12 14 1000–1024 22 24
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probability event. If this partitioning is a small probability event, then

finding the partitioning that satisfies the condition in which the num-

ber of overlapping samples is equal to n
4 is insignificant because a

small probability event is unlikely to happen in a single experiment.

A small probability event refers to an event with a probability of less

than 0.1 or 0.2. We thus consider the quantile values of P(Z > k) >

0.1 and P(Z > k) > 0.2 for different sample sizes. In view of the ex-

pectation of X following a hypergeometric distribution, which is one

quarter of the sample size, we always assume that sample size n is a

multiple of 4.

3.1. Case of two partitions

For two arbitrarily random partitions, we assume that X ∼
h( n

2 , n, n
2 ), Z = |X − EX|. Then, P(Z > k) > 0.1⇔FZ(k) ≤ 0.9 and P(Z

> k) > 0.2⇔FZ(k) ≤ 0.8 are obtained from P(Z > k) = 1 − P(Z ≤ k) =
1 − FZ(k). Based on Eqs. (3)–(6), Fig. 4 shows the quantile values for n

from 40 to 1024.

The quantile values in which a small probability event does not

occur are 1(P > 0.2) and 2(P > 0.1), i.e., P(Z > 1) > 0.2 and P(Z > 2) >

0.1 when sample size n lies between 40 and 60.

3.2. Case of multiple partitions

Let X1, X2, . . . , Xl be l = (m
2) random variables for m partitions in

an m × 2 cross-validation. For Z = |X − EX | and Zmax = max (Z ),
i i i i i
= 1, 2, . . . , l, the quantile values of Zmax for n from 40 to 1024 and

= 3, 7, and 11 are listed in Figs. 5–7 based on the distribution of Z

nd its properties.

From Figs. 5–7, we can see that even with a sample size of 1000,

he probabilities are larger than 0.2 when the differences between the

bserved and expected maximum numbers of overlapped samples

re only 13, 19, and 22 for 3 × 2, 7 × 2 and 11 × 2 cross-validations, re-

pectively. These probabilities occur easily in a large number of exper-

ments when implementing m × 2 cross-validation. From Examples 1

nd 2 of Section 1, we see that poor data partitioning results in a poor

erformance of an m × 2 cross-validation. All of these results indi-

ate the importance of data partitioning in an m × 2 cross-validation.

he probability of poor data partitioning occurring is high (see the

escription in Tables 2–4). For example, Table 2 shows the numbers

f Zmax = 0, 1, . . . , 14 in 100 replications of 3 × 2, 7 × 2, and 11 × 2

ross-validations for n = 200. With an increase in the value of m, the

ifference between the observed and expected maximum numbers

f overlapped samples gradually increases. For example, in 100 repli-

ations of an 11 × 2 cross-validation, the most frequently occurring

umbers of Zmax are 7, 8, and 9, and the numbers of replications are

6, 31, and 19, respectively.

. Conclusions

Considering the finding in this study that poor data partitioning

ay result in poor inference results, we propose a measure for data

artitioning in m × 2 cross-validation. By analyzing the distribution

f the statistic, we find that the occurrence of poor data partitioning

s not a small probability event. Thus, we should consider data parti-

ioning before analyzing data in practical application. Essentially, this

nding reflects the idea of statistical experimental design, which re-

uires that the collected data should be designed beforehand. Thus,

hen implementing data partitioning, we should control the num-

er of overlapped samples as closely as possible to its mathemati-

al expectation or construct data partitioning with identical number

f overlapped samples equal to mathematical expectation similar to

hat in Wang et al. [10].

In future research, we will attempt to theoretically study the ex-

ct function of covariance and the number of overlapped samples,

nd then provide an exact expression of these variables. Furthermore,

roviding the test statistic using this exact function serves to the

omparisons of algorithms’ performance.
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ppendix A

To clarify the values in the Figs. 4–7, Tables 5–8 corresponding to

igures are also provided in this section.
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